The Brain Fuck Scheduler v0.330 by Con Kolivas. A single shared runqueue O(n) strict fairness earliest deadline first design. Ultra low latency and excellent desktop performance for 1 to many CPUs. Not recommended for 4096 cpus. Scalability is optimal when your workload is equal to the number of CPUs on bfs. ie you should ONLY do make -j4 on quad core, -j2 on dual core and so on. Features SCHED_IDLEPRIO and SCHED_ISO scheduling policies as well. You do NOT need to use these policies for good performance, they are purely optional for even better performance in extreme conditions. To run something idleprio, use schedtool like so: schedtool -D -e make -j4 To run something isoprio, use schedtool like so: schedtool -I -e amarok Includes accurate sub-tick accounting of tasks so userspace reported cpu usage may be very different if you have very short lived tasks. --- Documentation/scheduler/sched-BFS.txt | 351 + Documentation/sysctl/kernel.txt | 26 arch/powerpc/platforms/cell/spufs/sched.c | 5 fs/proc/base.c | 2 include/linux/init_task.h | 65 include/linux/ioprio.h | 2 include/linux/sched.h | 106 init/Kconfig | 17 init/main.c | 1 kernel/delayacct.c | 2 kernel/exit.c | 2 kernel/kthread.c | 2 kernel/posix-cpu-timers.c | 14 kernel/sched.c | 4 kernel/sched_bfs.c | 6874 ++++++++++++++++++++++++++++++ kernel/slow-work.c | 1 kernel/sysctl.c | 31 lib/Kconfig.debug | 2 mm/oom_kill.c | 2 19 files changed, 7481 insertions(+), 28 deletions(-) Index: linux-2.6.35-bfs/Documentation/sysctl/kernel.txt =================================================================== --- linux-2.6.35-bfs.orig/Documentation/sysctl/kernel.txt 2010-02-25 21:51:46.000000000 +1100 +++ linux-2.6.35-bfs/Documentation/sysctl/kernel.txt 2010-08-13 08:39:05.070929446 +1000 @@ -31,6 +31,7 @@ show up in /proc/sys/kernel: - domainname - hostname - hotplug +- iso_cpu - java-appletviewer [ binfmt_java, obsolete ] - java-interpreter [ binfmt_java, obsolete ] - kstack_depth_to_print [ X86 only ] @@ -53,6 +54,7 @@ show up in /proc/sys/kernel: - randomize_va_space - real-root-dev ==> Documentation/initrd.txt - reboot-cmd [ SPARC only ] +- rr_interval - rtsig-max - rtsig-nr - sem @@ -240,6 +242,16 @@ Default value is "/sbin/hotplug". ============================================================== +iso_cpu: (BFS CPU scheduler only). + +This sets the percentage cpu that the unprivileged SCHED_ISO tasks can +run effectively at realtime priority, averaged over a rolling five +seconds over the -whole- system, meaning all cpus. + +Set to 70 (percent) by default. + +============================================================== + l2cr: (PPC only) This flag controls the L2 cache of G3 processor boards. If @@ -414,6 +426,20 @@ rebooting. ??? ============================================================== +rr_interval: (BFS CPU scheduler only) + +This is the smallest duration that any cpu process scheduling unit +will run for. Increasing this value can increase throughput of cpu +bound tasks substantially but at the expense of increased latencies +overall. Conversely decreasing it will decrease average and maximum +latencies but at the expense of throughput. This value is in +milliseconds and the default value chosen depends on the number of +cpus available at scheduler initialisation with a minimum of 6. + +Valid values are from 1-5000. + +============================================================== + rtsig-max & rtsig-nr: The file rtsig-max can be used to tune the maximum number Index: linux-2.6.35-bfs/include/linux/init_task.h =================================================================== --- linux-2.6.35-bfs.orig/include/linux/init_task.h 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/include/linux/init_task.h 2010-08-13 08:39:05.070929446 +1000 @@ -106,6 +106,69 @@ extern struct cred init_cred; * INIT_TASK is used to set up the first task table, touch at * your own risk!. Base=0, limit=0x1fffff (=2MB) */ +#ifdef CONFIG_SCHED_BFS +#define INIT_TASK(tsk) \ +{ \ + .state = 0, \ + .stack = &init_thread_info, \ + .usage = ATOMIC_INIT(2), \ + .flags = PF_KTHREAD, \ + .lock_depth = -1, \ + .prio = NORMAL_PRIO, \ + .static_prio = MAX_PRIO-20, \ + .normal_prio = NORMAL_PRIO, \ + .deadline = 0, \ + .policy = SCHED_NORMAL, \ + .cpus_allowed = CPU_MASK_ALL, \ + .mm = NULL, \ + .active_mm = &init_mm, \ + .run_list = LIST_HEAD_INIT(tsk.run_list), \ + .time_slice = HZ, \ + .tasks = LIST_HEAD_INIT(tsk.tasks), \ + .pushable_tasks = PLIST_NODE_INIT(tsk.pushable_tasks, MAX_PRIO), \ + .ptraced = LIST_HEAD_INIT(tsk.ptraced), \ + .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \ + .real_parent = &tsk, \ + .parent = &tsk, \ + .children = LIST_HEAD_INIT(tsk.children), \ + .sibling = LIST_HEAD_INIT(tsk.sibling), \ + .group_leader = &tsk, \ + .real_cred = &init_cred, \ + .cred = &init_cred, \ + .cred_guard_mutex = \ + __MUTEX_INITIALIZER(tsk.cred_guard_mutex), \ + .comm = "swapper", \ + .thread = INIT_THREAD, \ + .fs = &init_fs, \ + .files = &init_files, \ + .signal = &init_signals, \ + .sighand = &init_sighand, \ + .nsproxy = &init_nsproxy, \ + .pending = { \ + .list = LIST_HEAD_INIT(tsk.pending.list), \ + .signal = {{0}}}, \ + .blocked = {{0}}, \ + .alloc_lock = __SPIN_LOCK_UNLOCKED(tsk.alloc_lock), \ + .journal_info = NULL, \ + .cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \ + .fs_excl = ATOMIC_INIT(0), \ + .pi_lock = __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock), \ + .timer_slack_ns = 50000, /* 50 usec default slack */ \ + .pids = { \ + [PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \ + [PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \ + [PIDTYPE_SID] = INIT_PID_LINK(PIDTYPE_SID), \ + }, \ + .dirties = INIT_PROP_LOCAL_SINGLE(dirties), \ + INIT_IDS \ + INIT_PERF_EVENTS(tsk) \ + INIT_TRACE_IRQFLAGS \ + INIT_LOCKDEP \ + INIT_FTRACE_GRAPH \ + INIT_TRACE_RECURSION \ + INIT_TASK_RCU_PREEMPT(tsk) \ +} +#else /* CONFIG_SCHED_BFS */ #define INIT_TASK(tsk) \ { \ .state = 0, \ @@ -173,7 +236,7 @@ extern struct cred init_cred; INIT_TRACE_RECURSION \ INIT_TASK_RCU_PREEMPT(tsk) \ } - +#endif /* CONFIG_SCHED_BFS */ #define INIT_CPU_TIMERS(cpu_timers) \ { \ Index: linux-2.6.35-bfs/include/linux/sched.h =================================================================== --- linux-2.6.35-bfs.orig/include/linux/sched.h 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/include/linux/sched.h 2010-08-29 09:24:24.689454445 +1000 @@ -36,8 +36,15 @@ #define SCHED_FIFO 1 #define SCHED_RR 2 #define SCHED_BATCH 3 -/* SCHED_ISO: reserved but not implemented yet */ +/* SCHED_ISO: Implemented on BFS only */ #define SCHED_IDLE 5 +#ifdef CONFIG_SCHED_BFS +#define SCHED_ISO 4 +#define SCHED_IDLEPRIO SCHED_IDLE +#define SCHED_MAX (SCHED_IDLEPRIO) +#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX) +#endif + /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ #define SCHED_RESET_ON_FORK 0x40000000 @@ -268,8 +275,6 @@ extern asmlinkage void schedule_tail(str extern void init_idle(struct task_struct *idle, int cpu); extern void init_idle_bootup_task(struct task_struct *idle); -extern int runqueue_is_locked(int cpu); - extern cpumask_var_t nohz_cpu_mask; #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) extern int select_nohz_load_balancer(int cpu); @@ -1179,17 +1184,31 @@ struct task_struct { int lock_depth; /* BKL lock depth */ +#ifndef CONFIG_SCHED_BFS #ifdef CONFIG_SMP #ifdef __ARCH_WANT_UNLOCKED_CTXSW int oncpu; #endif #endif +#else /* CONFIG_SCHED_BFS */ + int oncpu; +#endif int prio, static_prio, normal_prio; unsigned int rt_priority; +#ifdef CONFIG_SCHED_BFS + int time_slice, first_time_slice; + u64 deadline; + struct list_head run_list; + u64 last_ran; + u64 sched_time; /* sched_clock time spent running */ + + unsigned long rt_timeout; +#else /* CONFIG_SCHED_BFS */ const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; +#endif #ifdef CONFIG_PREEMPT_NOTIFIERS /* list of struct preempt_notifier: */ @@ -1284,6 +1303,9 @@ struct task_struct { int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ cputime_t utime, stime, utimescaled, stimescaled; +#ifdef CONFIG_SCHED_BFS + unsigned long utime_pc, stime_pc; +#endif cputime_t gtime; #ifndef CONFIG_VIRT_CPU_ACCOUNTING cputime_t prev_utime, prev_stime; @@ -1506,6 +1528,67 @@ struct task_struct { #endif }; +#ifdef CONFIG_SCHED_BFS +extern int grunqueue_is_locked(void); +extern void grq_unlock_wait(void); +#define tsk_seruntime(t) ((t)->sched_time) +#define tsk_rttimeout(t) ((t)->rt_timeout) + +static inline void set_oom_timeslice(struct task_struct *p) +{ + p->time_slice = HZ; +} + +static inline void tsk_cpus_current(struct task_struct *p) +{ +} + +#define runqueue_is_locked(cpu) grunqueue_is_locked() + +static inline void print_scheduler_version(void) +{ + printk(KERN_INFO"BFS CPU scheduler v0.330 by Con Kolivas.\n"); +} + +static inline int iso_task(struct task_struct *p) +{ + return (p->policy == SCHED_ISO); +} +extern void remove_cpu(unsigned long cpu); +#else /* CFS */ +extern int runqueue_is_locked(int cpu); +#define tsk_seruntime(t) ((t)->se.sum_exec_runtime) +#define tsk_rttimeout(t) ((t)->rt.timeout) + +static inline void sched_exit(struct task_struct *p) +{ +} + +static inline void set_oom_timeslice(struct task_struct *p) +{ + p->rt.time_slice = HZ; +} + +static inline void tsk_cpus_current(struct task_struct *p) +{ + p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; +} + +static inline void print_scheduler_version(void) +{ + printk(KERN_INFO"CFS CPU scheduler.\n"); +} + +static inline int iso_task(struct task_struct *p) +{ + return 0; +} + +static inline void remove_cpu(unsigned long cpu) +{ +} +#endif /* CONFIG_SCHED_BFS */ + /* Future-safe accessor for struct task_struct's cpus_allowed. */ #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) @@ -1524,9 +1607,19 @@ struct task_struct { #define MAX_USER_RT_PRIO 100 #define MAX_RT_PRIO MAX_USER_RT_PRIO +#define DEFAULT_PRIO (MAX_RT_PRIO + 20) +#ifdef CONFIG_SCHED_BFS +#define PRIO_RANGE (40) +#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE) +#define ISO_PRIO (MAX_RT_PRIO) +#define NORMAL_PRIO (MAX_RT_PRIO + 1) +#define IDLE_PRIO (MAX_RT_PRIO + 2) +#define PRIO_LIMIT ((IDLE_PRIO) + 1) +#else /* CONFIG_SCHED_BFS */ #define MAX_PRIO (MAX_RT_PRIO + 40) -#define DEFAULT_PRIO (MAX_RT_PRIO + 20) +#define NORMAL_PRIO DEFAULT_PRIO +#endif /* CONFIG_SCHED_BFS */ static inline int rt_prio(int prio) { @@ -1835,7 +1928,7 @@ task_sched_runtime(struct task_struct *t extern unsigned long long thread_group_sched_runtime(struct task_struct *task); /* sched_exec is called by processes performing an exec */ -#ifdef CONFIG_SMP +#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_BFS) extern void sched_exec(void); #else #define sched_exec() {} @@ -1999,6 +2092,9 @@ extern void wake_up_new_task(struct task static inline void kick_process(struct task_struct *tsk) { } #endif extern void sched_fork(struct task_struct *p, int clone_flags); +#ifdef CONFIG_SCHED_BFS +extern void sched_exit(struct task_struct *p); +#endif extern void sched_dead(struct task_struct *p); extern void proc_caches_init(void); Index: linux-2.6.35-bfs/kernel/sysctl.c =================================================================== --- linux-2.6.35-bfs.orig/kernel/sysctl.c 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/kernel/sysctl.c 2010-08-13 08:39:05.071929295 +1000 @@ -115,7 +115,12 @@ static int zero; static int __maybe_unused one = 1; static int __maybe_unused two = 2; static unsigned long one_ul = 1; -static int one_hundred = 100; +static int __maybe_unused one_hundred = 100; +#ifdef CONFIG_SCHED_BFS +extern int rr_interval; +extern int sched_iso_cpu; +static int __read_mostly five_thousand = 5000; +#endif #ifdef CONFIG_PRINTK static int ten_thousand = 10000; #endif @@ -252,7 +257,7 @@ static struct ctl_table root_table[] = { { } }; -#ifdef CONFIG_SCHED_DEBUG +#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_BFS) static int min_sched_granularity_ns = 100000; /* 100 usecs */ static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */ static int min_wakeup_granularity_ns; /* 0 usecs */ @@ -269,6 +274,7 @@ static int max_extfrag_threshold = 1000; #endif static struct ctl_table kern_table[] = { +#ifndef CONFIG_SCHED_BFS { .procname = "sched_child_runs_first", .data = &sysctl_sched_child_runs_first, @@ -382,6 +388,7 @@ static struct ctl_table kern_table[] = { .mode = 0644, .proc_handler = proc_dointvec, }, +#endif /* !CONFIG_SCHED_BFS */ #ifdef CONFIG_PROVE_LOCKING { .procname = "prove_locking", @@ -779,6 +786,26 @@ static struct ctl_table kern_table[] = { .proc_handler = proc_dointvec, }, #endif +#ifdef CONFIG_SCHED_BFS + { + .procname = "rr_interval", + .data = &rr_interval, + .maxlen = sizeof (int), + .mode = 0644, + .proc_handler = &proc_dointvec_minmax, + .extra1 = &one, + .extra2 = &five_thousand, + }, + { + .procname = "iso_cpu", + .data = &sched_iso_cpu, + .maxlen = sizeof (int), + .mode = 0644, + .proc_handler = &proc_dointvec_minmax, + .extra1 = &zero, + .extra2 = &one_hundred, + }, +#endif #if defined(CONFIG_S390) && defined(CONFIG_SMP) { .procname = "spin_retry", Index: linux-2.6.35-bfs/kernel/sched_bfs.c =================================================================== --- /dev/null 1970-01-01 00:00:00.000000000 +0000 +++ linux-2.6.35-bfs/kernel/sched_bfs.c 2010-08-29 10:02:43.030955931 +1000 @@ -0,0 +1,6874 @@ +/* + * kernel/sched_bfs.c, was sched.c + * + * Kernel scheduler and related syscalls + * + * Copyright (C) 1991-2002 Linus Torvalds + * + * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and + * make semaphores SMP safe + * 1998-11-19 Implemented schedule_timeout() and related stuff + * by Andrea Arcangeli + * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: + * hybrid priority-list and round-robin design with + * an array-switch method of distributing timeslices + * and per-CPU runqueues. Cleanups and useful suggestions + * by Davide Libenzi, preemptible kernel bits by Robert Love. + * 2003-09-03 Interactivity tuning by Con Kolivas. + * 2004-04-02 Scheduler domains code by Nick Piggin + * 2007-04-15 Work begun on replacing all interactivity tuning with a + * fair scheduling design by Con Kolivas. + * 2007-05-05 Load balancing (smp-nice) and other improvements + * by Peter Williams + * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith + * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri + * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, + * Thomas Gleixner, Mike Kravetz + * now Brainfuck deadline scheduling policy by Con Kolivas deletes + * a whole lot of those previous things. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#define CREATE_TRACE_POINTS +#include + +#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) +#define rt_task(p) rt_prio((p)->prio) +#define rt_queue(rq) rt_prio((rq)->rq_prio) +#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) +#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \ + (policy) == SCHED_RR) +#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) +#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLEPRIO) +#define iso_task(p) unlikely((p)->policy == SCHED_ISO) +#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO) +#define ISO_PERIOD ((5 * HZ * num_online_cpus()) + 1) + +/* + * Convert user-nice values [ -20 ... 0 ... 19 ] + * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], + * and back. + */ +#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) +#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) +#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) + +/* + * 'User priority' is the nice value converted to something we + * can work with better when scaling various scheduler parameters, + * it's a [ 0 ... 39 ] range. + */ +#define USER_PRIO(p) ((p)-MAX_RT_PRIO) +#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) +#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) +#define SCHED_PRIO(p) ((p)+MAX_RT_PRIO) + +/* Some helpers for converting to/from various scales.*/ +#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) +#define MS_TO_NS(TIME) ((TIME) * 1000000) +#define MS_TO_US(TIME) ((TIME) * 1000) + +/* + * This is the time all tasks within the same priority round robin. + * Value is in ms and set to a minimum of 6ms. Scales with number of cpus. + * Tunable via /proc interface. + */ +int rr_interval __read_mostly = 6; + +/* + * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks + * are allowed to run five seconds as real time tasks. This is the total over + * all online cpus. + */ +int sched_iso_cpu __read_mostly = 70; + +/* + * The relative length of deadline for each priority(nice) level. + */ +static int prio_ratios[PRIO_RANGE] __read_mostly; + +/* + * The quota handed out to tasks of all priority levels when refilling their + * time_slice. + */ +static inline unsigned long timeslice(void) +{ + return MS_TO_US(rr_interval); +} + +/* + * The global runqueue data that all CPUs work off. All data is protected + * by grq.lock. + */ +struct global_rq { + raw_spinlock_t lock; + unsigned long nr_running; + unsigned long nr_uninterruptible; + unsigned long long nr_switches; + struct list_head queue[PRIO_LIMIT]; + DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1); + int iso_ticks; + int iso_refractory; +#ifdef CONFIG_SMP + unsigned long qnr; /* queued not running */ + cpumask_t cpu_idle_map; + int idle_cpus; +#endif +#if BITS_PER_LONG < 64 + unsigned long jiffies; + u64 jiffies_64; +#endif +}; + +/* There can be only one */ +static struct global_rq grq; + +/* + * This is the main, per-CPU runqueue data structure. + * This data should only be modified by the local cpu. + */ +struct rq { +#ifdef CONFIG_SMP +#ifdef CONFIG_NO_HZ + u64 nohz_stamp; + unsigned char in_nohz_recently; +#endif +#endif + unsigned int skip_clock_update; + + struct task_struct *curr, *idle; + struct mm_struct *prev_mm; + + /* Stored data about rq->curr to work outside grq lock */ + unsigned long rq_deadline; + unsigned int rq_policy; + int rq_time_slice; + u64 rq_last_ran; + int rq_prio; + int rq_running; /* There is a task running */ + + /* Accurate timekeeping data */ + u64 timekeep_clock; + unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc, + iowait_pc, idle_pc; + atomic_t nr_iowait; + +#ifdef CONFIG_SMP + int cpu; /* cpu of this runqueue */ + int online; + + struct root_domain *rd; + struct sched_domain *sd; + unsigned long *cpu_locality; /* CPU relative cache distance */ +#ifdef CONFIG_SCHED_SMT + int (*siblings_idle)(unsigned long cpu); + /* See if all smt siblings are idle */ + cpumask_t smt_siblings; +#endif +#ifdef CONFIG_SCHED_MC + int (*cache_idle)(unsigned long cpu); + /* See if all cache siblings are idle */ + cpumask_t cache_siblings; +#endif +#endif + + u64 clock; +#ifdef CONFIG_SCHEDSTATS + + /* latency stats */ + struct sched_info rq_sched_info; + unsigned long long rq_cpu_time; + /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ + + /* sys_sched_yield() stats */ + unsigned int yld_count; + + /* schedule() stats */ + unsigned int sched_switch; + unsigned int sched_count; + unsigned int sched_goidle; + + /* try_to_wake_up() stats */ + unsigned int ttwu_count; + unsigned int ttwu_local; + + /* BKL stats */ + unsigned int bkl_count; +#endif +}; + +static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp; +static DEFINE_MUTEX(sched_hotcpu_mutex); + +#ifdef CONFIG_SMP +/* + * sched_domains_mutex serializes calls to arch_init_sched_domains, + * detach_destroy_domains and partition_sched_domains. + */ +static DEFINE_MUTEX(sched_domains_mutex); + +/* + * We add the notion of a root-domain which will be used to define per-domain + * variables. Each exclusive cpuset essentially defines an island domain by + * fully partitioning the member cpus from any other cpuset. Whenever a new + * exclusive cpuset is created, we also create and attach a new root-domain + * object. + * + */ +struct root_domain { + atomic_t refcount; + cpumask_var_t span; + cpumask_var_t online; + + /* + * The "RT overload" flag: it gets set if a CPU has more than + * one runnable RT task. + */ + cpumask_var_t rto_mask; + atomic_t rto_count; +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + /* + * Preferred wake up cpu nominated by sched_mc balance that will be + * used when most cpus are idle in the system indicating overall very + * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) + */ + unsigned int sched_mc_preferred_wakeup_cpu; +#endif +}; + +/* + * By default the system creates a single root-domain with all cpus as + * members (mimicking the global state we have today). + */ +static struct root_domain def_root_domain; +#endif + +static inline int cpu_of(struct rq *rq) +{ +#ifdef CONFIG_SMP + return rq->cpu; +#else + return 0; +#endif +} + +#define rcu_dereference_check_sched_domain(p) \ + rcu_dereference_check((p), \ + rcu_read_lock_sched_held() || \ + lockdep_is_held(&sched_domains_mutex)) + +/* + * The domain tree (rq->sd) is protected by RCU's quiescent state transition. + * See detach_destroy_domains: synchronize_sched for details. + * + * The domain tree of any CPU may only be accessed from within + * preempt-disabled sections. + */ +#define for_each_domain(cpu, __sd) \ + for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) + +#ifdef CONFIG_SMP +#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) +#define this_rq() (&__get_cpu_var(runqueues)) +#define task_rq(p) cpu_rq(task_cpu(p)) +#define cpu_curr(cpu) (cpu_rq(cpu)->curr) +#else /* CONFIG_SMP */ +static struct rq *uprq; +#define cpu_rq(cpu) (uprq) +#define this_rq() (uprq) +#define task_rq(p) (uprq) +#define cpu_curr(cpu) ((uprq)->curr) +#endif +#define raw_rq() (&__raw_get_cpu_var(runqueues)) + +#include "sched_stats.h" + +#ifndef prepare_arch_switch +# define prepare_arch_switch(next) do { } while (0) +#endif +#ifndef finish_arch_switch +# define finish_arch_switch(prev) do { } while (0) +#endif + +/* + * All common locking functions performed on grq.lock. rq->clock is local to + * the cpu accessing it so it can be modified just with interrupts disabled, + * but looking up task_rq must be done under grq.lock to be safe. + */ +inline void update_rq_clock(struct rq *rq) +{ + if (!rq->skip_clock_update) + rq->clock = sched_clock_cpu(cpu_of(rq)); +} + +static inline int task_running(struct task_struct *p) +{ + return p->oncpu; +} + +static inline void grq_lock(void) + __acquires(grq.lock) +{ + raw_spin_lock(&grq.lock); +} + +static inline void grq_unlock(void) + __releases(grq.lock) +{ + raw_spin_unlock(&grq.lock); +} + +static inline void grq_lock_irq(void) + __acquires(grq.lock) +{ + raw_spin_lock_irq(&grq.lock); +} + +static inline void time_lock_grq(struct rq *rq) + __acquires(grq.lock) +{ + update_rq_clock(rq); + grq_lock(); +} + +static inline void grq_unlock_irq(void) + __releases(grq.lock) +{ + raw_spin_unlock_irq(&grq.lock); +} + +static inline void grq_lock_irqsave(unsigned long *flags) + __acquires(grq.lock) +{ + raw_spin_lock_irqsave(&grq.lock, *flags); +} + +static inline void grq_unlock_irqrestore(unsigned long *flags) + __releases(grq.lock) +{ + raw_spin_unlock_irqrestore(&grq.lock, *flags); +} + +static inline struct rq +*task_grq_lock(struct task_struct *p, unsigned long *flags) + __acquires(grq.lock) +{ + grq_lock_irqsave(flags); + return task_rq(p); +} + +static inline struct rq +*time_task_grq_lock(struct task_struct *p, unsigned long *flags) + __acquires(grq.lock) +{ + struct rq *rq = task_grq_lock(p, flags); + update_rq_clock(rq); + return rq; +} + +static inline struct rq *task_grq_lock_irq(struct task_struct *p) + __acquires(grq.lock) +{ + grq_lock_irq(); + return task_rq(p); +} + +static inline void time_task_grq_lock_irq(struct task_struct *p) + __acquires(grq.lock) +{ + struct rq *rq = task_grq_lock_irq(p); + update_rq_clock(rq); +} + +static inline void task_grq_unlock_irq(void) + __releases(grq.lock) +{ + grq_unlock_irq(); +} + +static inline void task_grq_unlock(unsigned long *flags) + __releases(grq.lock) +{ + grq_unlock_irqrestore(flags); +} + +/** + * grunqueue_is_locked + * + * Returns true if the global runqueue is locked. + * This interface allows printk to be called with the runqueue lock + * held and know whether or not it is OK to wake up the klogd. + */ +inline int grunqueue_is_locked(void) +{ + return raw_spin_is_locked(&grq.lock); +} + +inline void grq_unlock_wait(void) + __releases(grq.lock) +{ + smp_mb(); /* spin-unlock-wait is not a full memory barrier */ + raw_spin_unlock_wait(&grq.lock); +} + +static inline void time_grq_lock(struct rq *rq, unsigned long *flags) + __acquires(grq.lock) +{ + local_irq_save(*flags); + time_lock_grq(rq); +} + +static inline struct rq *__task_grq_lock(struct task_struct *p) + __acquires(grq.lock) +{ + grq_lock(); + return task_rq(p); +} + +static inline void __task_grq_unlock(void) + __releases(grq.lock) +{ + grq_unlock(); +} + +#ifndef __ARCH_WANT_UNLOCKED_CTXSW +static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) +{ +} + +static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) +{ +#ifdef CONFIG_DEBUG_SPINLOCK + /* this is a valid case when another task releases the spinlock */ + grq.lock.owner = current; +#endif + /* + * If we are tracking spinlock dependencies then we have to + * fix up the runqueue lock - which gets 'carried over' from + * prev into current: + */ + spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_); + + grq_unlock_irq(); +} + +#else /* __ARCH_WANT_UNLOCKED_CTXSW */ + +static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) +{ +#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW + grq_unlock_irq(); +#else + grq_unlock(); +#endif +} + +static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) +{ + smp_wmb(); +#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW + local_irq_enable(); +#endif +} +#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ + +/* + * In order to have a monotonic clock that does not wrap we have a 64 bit + * unsigned long that's protected by grq.lock used in place of jiffies on + * 32 bit builds. + */ +#if BITS_PER_LONG < 64 +static inline void update_gjiffies(void) +{ + if (grq.jiffies != jiffies) { + grq_lock(); + grq.jiffies = jiffies; + grq.jiffies_64++; + grq_unlock(); + } +} + +#define gjiffies (grq.jiffies_64) + +#else /* BITS_PER_LONG < 64 */ +static inline void update_gjiffies(void) +{ +} + +#define gjiffies jiffies + +#endif /* BITS_PER_LONG < 64 */ + +static inline int deadline_before(u64 deadline, u64 time) +{ + return (deadline < time); +} + +static inline int deadline_after(u64 deadline, u64 time) +{ + return (deadline > time); +} + +/* + * A task that is queued but not running will be on the grq run list. + * A task that is not running or queued will not be on the grq run list. + * A task that is currently running will have ->oncpu set but not on the + * grq run list. + */ +static inline int task_queued(struct task_struct *p) +{ + return (!list_empty(&p->run_list)); +} + +/* + * Removing from the global runqueue. Enter with grq locked. + */ +static void dequeue_task(struct task_struct *p) +{ + list_del_init(&p->run_list); + if (list_empty(grq.queue + p->prio)) + __clear_bit(p->prio, grq.prio_bitmap); +} + +/* + * When a task is freshly forked, the first_time_slice flag is set to say + * it has taken time_slice from its parent and if it exits on this first + * time_slice it can return its time_slice back to the parent. + */ +static inline void reset_first_time_slice(struct task_struct *p) +{ + if (unlikely(p->first_time_slice)) + p->first_time_slice = 0; +} + +/* + * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as + * an idle task, we ensure none of the following conditions are met. + */ +static int idleprio_suitable(struct task_struct *p) +{ + return (!freezing(p) && !signal_pending(p) && + !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING))); +} + +/* + * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check + * that the iso_refractory flag is not set. + */ +static int isoprio_suitable(void) +{ + return !grq.iso_refractory; +} + +/* + * Adding to the global runqueue. Enter with grq locked. + */ +static void enqueue_task(struct task_struct *p) +{ + if (!rt_task(p)) { + /* Check it hasn't gotten rt from PI */ + if ((idleprio_task(p) && idleprio_suitable(p)) || + (iso_task(p) && isoprio_suitable())) + p->prio = p->normal_prio; + else + p->prio = NORMAL_PRIO; + } + __set_bit(p->prio, grq.prio_bitmap); + list_add_tail(&p->run_list, grq.queue + p->prio); + sched_info_queued(p); +} + +/* Only idle task does this as a real time task*/ +static inline void enqueue_task_head(struct task_struct *p) +{ + __set_bit(p->prio, grq.prio_bitmap); + list_add(&p->run_list, grq.queue + p->prio); + sched_info_queued(p); +} + +static inline void requeue_task(struct task_struct *p) +{ + sched_info_queued(p); +} + +/* + * Returns the relative length of deadline all compared to the shortest + * deadline which is that of nice -20. + */ +static inline int task_prio_ratio(struct task_struct *p) +{ + return prio_ratios[TASK_USER_PRIO(p)]; +} + +/* + * task_timeslice - all tasks of all priorities get the exact same timeslice + * length. CPU distribution is handled by giving different deadlines to + * tasks of different priorities. + */ +static inline int task_timeslice(struct task_struct *p) +{ + return (rr_interval * task_prio_ratio(p) / 100); +} + +#ifdef CONFIG_SMP +/* + * qnr is the "queued but not running" count which is the total number of + * tasks on the global runqueue list waiting for cpu time but not actually + * currently running on a cpu. + */ +static inline void inc_qnr(void) +{ + grq.qnr++; +} + +static inline void dec_qnr(void) +{ + grq.qnr--; +} + +static inline int queued_notrunning(void) +{ + return grq.qnr; +} + +/* + * The cpu_idle_map stores a bitmap of all the CPUs currently idle to + * allow easy lookup of whether any suitable idle CPUs are available. + * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the + * idle_cpus variable than to do a full bitmask check when we are busy. + */ +static inline void set_cpuidle_map(unsigned long cpu) +{ + cpu_set(cpu, grq.cpu_idle_map); + grq.idle_cpus = 1; +} + +static inline void clear_cpuidle_map(unsigned long cpu) +{ + cpu_clear(cpu, grq.cpu_idle_map); + if (cpus_empty(grq.cpu_idle_map)) + grq.idle_cpus = 0; +} + +static int suitable_idle_cpus(struct task_struct *p) +{ + if (!grq.idle_cpus) + return 0; + return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map)); +} + +static void resched_task(struct task_struct *p); + +#define CPUIDLE_CACHE_BUSY (1) +#define CPUIDLE_DIFF_CPU (2) +#define CPUIDLE_THREAD_BUSY (4) +#define CPUIDLE_DIFF_NODE (8) + +/* + * The best idle CPU is chosen according to the CPUIDLE ranking above where the + * lowest value would give the most suitable CPU to schedule p onto next. We + * iterate from the last CPU upwards instead of using for_each_cpu_mask so as + * to be able to break out immediately if the last CPU is idle. The order works + * out to be the following: + * + * Same core, idle or busy cache, idle threads + * Other core, same cache, idle or busy cache, idle threads. + * Same node, other CPU, idle cache, idle threads. + * Same node, other CPU, busy cache, idle threads. + * Same core, busy threads. + * Other core, same cache, busy threads. + * Same node, other CPU, busy threads. + * Other node, other CPU, idle cache, idle threads. + * Other node, other CPU, busy cache, idle threads. + * Other node, other CPU, busy threads. + */ +static void resched_best_idle(struct task_struct *p) +{ + unsigned long cpu_tmp, best_cpu, best_ranking; + cpumask_t tmpmask; + struct rq *rq; + int iterate; + + cpus_and(tmpmask, p->cpus_allowed, grq.cpu_idle_map); + iterate = cpus_weight(tmpmask); + best_cpu = task_cpu(p); + /* + * Start below the last CPU and work up with next_cpu as the last + * CPU might not be idle or affinity might not allow it. + */ + cpu_tmp = best_cpu - 1; + rq = cpu_rq(best_cpu); + best_ranking = ~0UL; + + do { + unsigned long ranking; + struct rq *tmp_rq; + + ranking = 0; + cpu_tmp = next_cpu(cpu_tmp, tmpmask); + if (cpu_tmp >= nr_cpu_ids) { + cpu_tmp = -1; + cpu_tmp = next_cpu(cpu_tmp, tmpmask); + } + tmp_rq = cpu_rq(cpu_tmp); + + if (rq->cpu_locality[cpu_tmp]) { +#ifdef CONFIG_NUMA + if (rq->cpu_locality[cpu_tmp] > 1) + ranking |= CPUIDLE_DIFF_NODE; +#endif + ranking |= CPUIDLE_DIFF_CPU; + } +#ifdef CONFIG_SCHED_MC + if (!(tmp_rq->cache_idle(cpu_tmp))) + ranking |= CPUIDLE_CACHE_BUSY; +#endif +#ifdef CONFIG_SCHED_SMT + if (!(tmp_rq->siblings_idle(cpu_tmp))) + ranking |= CPUIDLE_THREAD_BUSY; +#endif + if (ranking < best_ranking) { + best_cpu = cpu_tmp; + if (ranking <= 1) + break; + best_ranking = ranking; + } + } while (--iterate > 0); + + resched_task(cpu_rq(best_cpu)->curr); +} + +static inline void resched_suitable_idle(struct task_struct *p) +{ + if (suitable_idle_cpus(p)) + resched_best_idle(p); +} + +/* + * The cpu cache locality difference between CPUs is used to determine how far + * to offset the virtual deadline. "One" difference in locality means that one + * timeslice difference is allowed longer for the cpu local tasks. This is + * enough in the common case when tasks are up to 2* number of CPUs to keep + * tasks within their shared cache CPUs only. CPUs on different nodes or not + * even in this domain (NUMA) have "3" difference, allowing 4 times longer + * deadlines before being taken onto another cpu, allowing for 2* the double + * seen by separate CPUs above. + * Simple summary: Virtual deadlines are equal on shared cache CPUs, double + * on separate CPUs and quadruple in separate NUMA nodes. + */ +static inline int +cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p) +{ + return rq->cpu_locality[cpu_of(task_rq)] * task_timeslice(p); +} +#else /* CONFIG_SMP */ +static inline void inc_qnr(void) +{ +} + +static inline void dec_qnr(void) +{ +} + +static inline int queued_notrunning(void) +{ + return grq.nr_running; +} + +static inline void set_cpuidle_map(unsigned long cpu) +{ +} + +static inline void clear_cpuidle_map(unsigned long cpu) +{ +} + +static inline int suitable_idle_cpus(struct task_struct *p) +{ + return uprq->curr == uprq->idle; +} + +static inline void resched_suitable_idle(struct task_struct *p) +{ +} + +static inline int +cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p) +{ + return 0; +} +#endif /* CONFIG_SMP */ + +/* + * activate_idle_task - move idle task to the _front_ of runqueue. + */ +static inline void activate_idle_task(struct task_struct *p) +{ + enqueue_task_head(p); + grq.nr_running++; + inc_qnr(); +} + +static inline int normal_prio(struct task_struct *p) +{ + if (has_rt_policy(p)) + return MAX_RT_PRIO - 1 - p->rt_priority; + if (idleprio_task(p)) + return IDLE_PRIO; + if (iso_task(p)) + return ISO_PRIO; + return NORMAL_PRIO; +} + +/* + * Calculate the current priority, i.e. the priority + * taken into account by the scheduler. This value might + * be boosted by RT tasks as it will be RT if the task got + * RT-boosted. If not then it returns p->normal_prio. + */ +static int effective_prio(struct task_struct *p) +{ + p->normal_prio = normal_prio(p); + /* + * If we are RT tasks or we were boosted to RT priority, + * keep the priority unchanged. Otherwise, update priority + * to the normal priority: + */ + if (!rt_prio(p->prio)) + return p->normal_prio; + return p->prio; +} + +/* + * activate_task - move a task to the runqueue. Enter with grq locked. + */ +static void activate_task(struct task_struct *p, struct rq *rq) +{ + update_rq_clock(rq); + + /* + * Sleep time is in units of nanosecs, so shift by 20 to get a + * milliseconds-range estimation of the amount of time that the task + * spent sleeping: + */ + if (unlikely(prof_on == SLEEP_PROFILING)) { + if (p->state == TASK_UNINTERRUPTIBLE) + profile_hits(SLEEP_PROFILING, (void *)get_wchan(p), + (rq->clock - p->last_ran) >> 20); + } + + p->prio = effective_prio(p); + if (task_contributes_to_load(p)) + grq.nr_uninterruptible--; + enqueue_task(p); + grq.nr_running++; + inc_qnr(); +} + +/* + * deactivate_task - If it's running, it's not on the grq and we can just + * decrement the nr_running. Enter with grq locked. + */ +static inline void deactivate_task(struct task_struct *p) +{ + if (task_contributes_to_load(p)) + grq.nr_uninterruptible++; + grq.nr_running--; +} + +#ifdef CONFIG_SMP +void set_task_cpu(struct task_struct *p, unsigned int cpu) +{ + trace_sched_migrate_task(p, cpu); + if (task_cpu(p) != cpu) + perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); + + /* + * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be + * successfuly executed on another CPU. We must ensure that updates of + * per-task data have been completed by this moment. + */ + smp_wmb(); + task_thread_info(p)->cpu = cpu; +} +#endif + +/* + * Move a task off the global queue and take it to a cpu for it will + * become the running task. + */ +static inline void take_task(struct rq *rq, struct task_struct *p) +{ + set_task_cpu(p, cpu_of(rq)); + dequeue_task(p); + dec_qnr(); +} + +/* + * Returns a descheduling task to the grq runqueue unless it is being + * deactivated. + */ +static inline void return_task(struct task_struct *p, int deactivate) +{ + if (deactivate) + deactivate_task(p); + else { + inc_qnr(); + enqueue_task(p); + } +} + +/* + * resched_task - mark a task 'to be rescheduled now'. + * + * On UP this means the setting of the need_resched flag, on SMP it + * might also involve a cross-CPU call to trigger the scheduler on + * the target CPU. + */ +#ifdef CONFIG_SMP + +#ifndef tsk_is_polling +#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) +#endif + +static void resched_task(struct task_struct *p) +{ + int cpu; + + assert_raw_spin_locked(&grq.lock); + + if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) + return; + + set_tsk_thread_flag(p, TIF_NEED_RESCHED); + + cpu = task_cpu(p); + if (cpu == smp_processor_id()) + return; + + /* NEED_RESCHED must be visible before we test polling */ + smp_mb(); + if (!tsk_is_polling(p)) + smp_send_reschedule(cpu); +} + +#else +static inline void resched_task(struct task_struct *p) +{ + assert_raw_spin_locked(&grq.lock); + set_tsk_need_resched(p); +} +#endif + +/** + * task_curr - is this task currently executing on a CPU? + * @p: the task in question. + */ +inline int task_curr(const struct task_struct *p) +{ + return cpu_curr(task_cpu(p)) == p; +} + +#ifdef CONFIG_SMP +struct migration_req { + struct task_struct *task; + int dest_cpu; +}; + +/* + * wait_task_inactive - wait for a thread to unschedule. + * + * If @match_state is nonzero, it's the @p->state value just checked and + * not expected to change. If it changes, i.e. @p might have woken up, + * then return zero. When we succeed in waiting for @p to be off its CPU, + * we return a positive number (its total switch count). If a second call + * a short while later returns the same number, the caller can be sure that + * @p has remained unscheduled the whole time. + * + * The caller must ensure that the task *will* unschedule sometime soon, + * else this function might spin for a *long* time. This function can't + * be called with interrupts off, or it may introduce deadlock with + * smp_call_function() if an IPI is sent by the same process we are + * waiting to become inactive. + */ +unsigned long wait_task_inactive(struct task_struct *p, long match_state) +{ + unsigned long flags; + int running, on_rq; + unsigned long ncsw; + struct rq *rq; + + for (;;) { + /* + * We do the initial early heuristics without holding + * any task-queue locks at all. We'll only try to get + * the runqueue lock when things look like they will + * work out! In the unlikely event rq is dereferenced + * since we're lockless, grab it again. + */ +#ifdef CONFIG_SMP +retry_rq: + rq = task_rq(p); + if (unlikely(!rq)) + goto retry_rq; +#else /* CONFIG_SMP */ + rq = task_rq(p); +#endif + /* + * If the task is actively running on another CPU + * still, just relax and busy-wait without holding + * any locks. + * + * NOTE! Since we don't hold any locks, it's not + * even sure that "rq" stays as the right runqueue! + * But we don't care, since this will return false + * if the runqueue has changed and p is actually now + * running somewhere else! + */ + while (task_running(p) && p == rq->curr) { + if (match_state && unlikely(p->state != match_state)) + return 0; + cpu_relax(); + } + + /* + * Ok, time to look more closely! We need the grq + * lock now, to be *sure*. If we're wrong, we'll + * just go back and repeat. + */ + rq = task_grq_lock(p, &flags); + trace_sched_wait_task(p); + running = task_running(p); + on_rq = task_queued(p); + ncsw = 0; + if (!match_state || p->state == match_state) + ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ + task_grq_unlock(&flags); + + /* + * If it changed from the expected state, bail out now. + */ + if (unlikely(!ncsw)) + break; + + /* + * Was it really running after all now that we + * checked with the proper locks actually held? + * + * Oops. Go back and try again.. + */ + if (unlikely(running)) { + cpu_relax(); + continue; + } + + /* + * It's not enough that it's not actively running, + * it must be off the runqueue _entirely_, and not + * preempted! + * + * So if it was still runnable (but just not actively + * running right now), it's preempted, and we should + * yield - it could be a while. + */ + if (unlikely(on_rq)) { + schedule_timeout_uninterruptible(1); + continue; + } + + /* + * Ahh, all good. It wasn't running, and it wasn't + * runnable, which means that it will never become + * running in the future either. We're all done! + */ + break; + } + + return ncsw; +} + +/*** + * kick_process - kick a running thread to enter/exit the kernel + * @p: the to-be-kicked thread + * + * Cause a process which is running on another CPU to enter + * kernel-mode, without any delay. (to get signals handled.) + * + * NOTE: this function doesnt have to take the runqueue lock, + * because all it wants to ensure is that the remote task enters + * the kernel. If the IPI races and the task has been migrated + * to another CPU then no harm is done and the purpose has been + * achieved as well. + */ +void kick_process(struct task_struct *p) +{ + int cpu; + + preempt_disable(); + cpu = task_cpu(p); + if ((cpu != smp_processor_id()) && task_curr(p)) + smp_send_reschedule(cpu); + preempt_enable(); +} +EXPORT_SYMBOL_GPL(kick_process); +#endif + +#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT) +#define task_idle(p) ((p)->prio == PRIO_LIMIT) + +#ifdef CONFIG_HOTPLUG_CPU +/* + * Check to see if there is a task that is affined only to offline CPUs but + * still wants runtime. This happens to kernel threads during suspend/halt and + * disabling of CPUs. + */ +static inline int online_cpus(struct task_struct *p) +{ + return (likely(cpus_intersects(cpu_online_map, p->cpus_allowed))); +} +#else /* CONFIG_HOTPLUG_CPU */ +/* All available CPUs are always online without hotplug. */ +static inline int online_cpus(struct task_struct *p) +{ + return 1; +} +#endif + +/* + * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the + * basis of earlier deadlines. SCHED_BATCH, ISO and IDLEPRIO don't preempt + * between themselves, they cooperatively multitask. An idle rq scores as + * prio PRIO_LIMIT so it is always preempted. latest_deadline and + * highest_prio_rq are initialised only to silence the compiler. When + * all else is equal, still prefer this_rq. + */ +#ifdef CONFIG_SMP +static void try_preempt(struct task_struct *p, struct rq *this_rq) +{ + struct rq *highest_prio_rq = this_rq; + unsigned long latest_deadline, cpu; + int highest_prio; + cpumask_t tmp; + + if (suitable_idle_cpus(p)) { + resched_best_idle(p); + return; + } + + if (online_cpus(p)) + cpus_and(tmp, cpu_online_map, p->cpus_allowed); + else + (cpumask_copy(&tmp, &cpu_online_map)); + + latest_deadline = 0; + highest_prio = -1; + + for_each_cpu_mask(cpu, tmp) { + unsigned long offset_deadline; + struct rq *rq; + int rq_prio; + + rq = cpu_rq(cpu); + rq_prio = rq->rq_prio; + if (rq_prio < highest_prio) + continue; + + offset_deadline = rq->rq_deadline - + cache_distance(this_rq, rq, p); + + if (rq_prio > highest_prio || + (deadline_after(offset_deadline, latest_deadline) || + (offset_deadline == latest_deadline && this_rq == rq))) { + latest_deadline = offset_deadline; + highest_prio = rq_prio; + highest_prio_rq = rq; + } + } + + if (p->prio > highest_prio || (p->prio == highest_prio && + p->policy == SCHED_NORMAL && + !deadline_before(p->deadline, latest_deadline))) + return; + + /* p gets to preempt highest_prio_rq->curr */ + resched_task(highest_prio_rq->curr); + highest_prio_rq->skip_clock_update = 1; +} +#else /* CONFIG_SMP */ +static void try_preempt(struct task_struct *p, struct rq *this_rq) +{ + if (p->prio < uprq->rq_prio || + (p->prio == uprq->rq_prio && p->policy == SCHED_NORMAL && + deadline_before(p->deadline, uprq->rq_deadline))) + resched_task(uprq->curr); +} +#endif /* CONFIG_SMP */ + +/** + * task_oncpu_function_call - call a function on the cpu on which a task runs + * @p: the task to evaluate + * @func: the function to be called + * @info: the function call argument + * + * Calls the function @func when the task is currently running. This might + * be on the current CPU, which just calls the function directly + */ +void task_oncpu_function_call(struct task_struct *p, + void (*func) (void *info), void *info) +{ + int cpu; + + preempt_disable(); + cpu = task_cpu(p); + if (task_curr(p)) + smp_call_function_single(cpu, func, info, 1); + preempt_enable(); +} + +/*** + * try_to_wake_up - wake up a thread + * @p: the to-be-woken-up thread + * @state: the mask of task states that can be woken + * @sync: do a synchronous wakeup? + * + * Put it on the run-queue if it's not already there. The "current" + * thread is always on the run-queue (except when the actual + * re-schedule is in progress), and as such you're allowed to do + * the simpler "current->state = TASK_RUNNING" to mark yourself + * runnable without the overhead of this. + * + * returns failure only if the task is already active. + */ +static int try_to_wake_up(struct task_struct *p, unsigned int state, + int wake_flags) +{ + int sync, success = 0; + unsigned long flags; + struct rq *rq; + + get_cpu(); + + /* This barrier is undocumented, probably for p->state? くそ */ + smp_wmb(); + + /* + * No need to do time_lock_grq as we only need to update the rq clock + * if we activate the task + */ + rq = task_grq_lock(p, &flags); + + /* state is a volatile long, どうして、分からない */ + if (!((unsigned int)p->state & state)) + goto out_unlock; + + if (task_queued(p) || task_running(p)) + goto out_running; + + activate_task(p, rq); + sync = wake_flags & WF_SYNC; + + /* + * Sync wakeups (i.e. those types of wakeups where the waker + * has indicated that it will leave the CPU in short order) + * don't trigger a preemption if there are no idle cpus, + * instead waiting for current to deschedule. + */ + if (!sync || suitable_idle_cpus(p)) + try_preempt(p, rq); + success = 1; + +out_running: + trace_sched_wakeup(p, success); + p->state = TASK_RUNNING; +out_unlock: + task_grq_unlock(&flags); + put_cpu(); + + return success; +} + +/** + * wake_up_process - Wake up a specific process + * @p: The process to be woken up. + * + * Attempt to wake up the nominated process and move it to the set of runnable + * processes. Returns 1 if the process was woken up, 0 if it was already + * running. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +int wake_up_process(struct task_struct *p) +{ + return try_to_wake_up(p, TASK_ALL, 0); +} +EXPORT_SYMBOL(wake_up_process); + +int wake_up_state(struct task_struct *p, unsigned int state) +{ + return try_to_wake_up(p, state, 0); +} + +/* + * Perform scheduler related setup for a newly forked process p. + * p is forked by current. + */ +void sched_fork(struct task_struct *p, int clone_flags) +{ + int cpu = get_cpu(); + struct rq *rq; + +#ifdef CONFIG_PREEMPT_NOTIFIERS + INIT_HLIST_HEAD(&p->preempt_notifiers); +#endif + /* + * We mark the process as running here. This guarantees that + * nobody will actually run it, and a signal or other external + * event cannot wake it up and insert it on the runqueue either. + */ + p->state = TASK_RUNNING; + set_task_cpu(p, cpu); + + /* Should be reset in fork.c but done here for ease of bfs patching */ + p->sched_time = p->stime_pc = p->utime_pc = 0; + + /* + * Revert to default priority/policy on fork if requested. + */ + if (unlikely(p->sched_reset_on_fork)) { + if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { + p->policy = SCHED_NORMAL; + p->normal_prio = normal_prio(p); + } + + if (PRIO_TO_NICE(p->static_prio) < 0) { + p->static_prio = NICE_TO_PRIO(0); + p->normal_prio = p->static_prio; + } + + /* + * We don't need the reset flag anymore after the fork. It has + * fulfilled its duty: + */ + p->sched_reset_on_fork = 0; + } + + /* + * Make sure we do not leak PI boosting priority to the child. + */ + p->prio = current->normal_prio; + + INIT_LIST_HEAD(&p->run_list); +#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) + if (unlikely(sched_info_on())) + memset(&p->sched_info, 0, sizeof(p->sched_info)); +#endif + + p->oncpu = 0; + +#ifdef CONFIG_PREEMPT + /* Want to start with kernel preemption disabled. */ + task_thread_info(p)->preempt_count = 1; +#endif + if (unlikely(p->policy == SCHED_FIFO)) + goto out; + /* + * Share the timeslice between parent and child, thus the + * total amount of pending timeslices in the system doesn't change, + * resulting in more scheduling fairness. If it's negative, it won't + * matter since that's the same as being 0. current's time_slice is + * actually in rq_time_slice when it's running. + */ + rq = task_grq_lock_irq(current); + if (likely(rq->rq_time_slice > 0)) { + rq->rq_time_slice /= 2; + /* + * The remainder of the first timeslice might be recovered by + * the parent if the child exits early enough. + */ + p->first_time_slice = 1; + } + p->time_slice = rq->rq_time_slice; + task_grq_unlock_irq(); +out: + put_cpu(); +} + +/* + * wake_up_new_task - wake up a newly created task for the first time. + * + * This function will do some initial scheduler statistics housekeeping + * that must be done for every newly created context, then puts the task + * on the runqueue and wakes it. + */ +void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) +{ + struct task_struct *parent; + unsigned long flags; + struct rq *rq; + + rq = task_grq_lock(p, &flags); + p->state = TASK_RUNNING; + parent = p->parent; + /* Unnecessary but small chance that the parent changed CPU */ + set_task_cpu(p, task_cpu(parent)); + activate_task(p, rq); + trace_sched_wakeup_new(p, 1); + if (!(clone_flags & CLONE_VM) && rq->curr == parent && + !suitable_idle_cpus(p)) { + /* + * The VM isn't cloned, so we're in a good position to + * do child-runs-first in anticipation of an exec. This + * usually avoids a lot of COW overhead. + */ + resched_task(parent); + } else + try_preempt(p, rq); + task_grq_unlock(&flags); +} + +/* + * Potentially available exiting-child timeslices are + * retrieved here - this way the parent does not get + * penalised for creating too many threads. + * + * (this cannot be used to 'generate' timeslices + * artificially, because any timeslice recovered here + * was given away by the parent in the first place.) + */ +void sched_exit(struct task_struct *p) +{ + struct task_struct *parent; + unsigned long flags; + struct rq *rq; + + if (unlikely(p->first_time_slice)) { + int *par_tslice, *p_tslice; + + parent = p->parent; + par_tslice = &parent->time_slice; + p_tslice = &p->time_slice; + + rq = task_grq_lock(parent, &flags); + /* The real time_slice of the "curr" task is on the rq var.*/ + if (p == rq->curr) + p_tslice = &rq->rq_time_slice; + else if (parent == task_rq(parent)->curr) + par_tslice = &rq->rq_time_slice; + + *par_tslice += *p_tslice; + if (unlikely(*par_tslice > timeslice())) + *par_tslice = timeslice(); + task_grq_unlock(&flags); + } +} + +#ifdef CONFIG_PREEMPT_NOTIFIERS + +/** + * preempt_notifier_register - tell me when current is being preempted & rescheduled + * @notifier: notifier struct to register + */ +void preempt_notifier_register(struct preempt_notifier *notifier) +{ + hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); +} +EXPORT_SYMBOL_GPL(preempt_notifier_register); + +/** + * preempt_notifier_unregister - no longer interested in preemption notifications + * @notifier: notifier struct to unregister + * + * This is safe to call from within a preemption notifier. + */ +void preempt_notifier_unregister(struct preempt_notifier *notifier) +{ + hlist_del(¬ifier->link); +} +EXPORT_SYMBOL_GPL(preempt_notifier_unregister); + +static void fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ + struct preempt_notifier *notifier; + struct hlist_node *node; + + hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) + notifier->ops->sched_in(notifier, raw_smp_processor_id()); +} + +static void +fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) +{ + struct preempt_notifier *notifier; + struct hlist_node *node; + + hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) + notifier->ops->sched_out(notifier, next); +} + +#else /* !CONFIG_PREEMPT_NOTIFIERS */ + +static void fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ +} + +static void +fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) +{ +} + +#endif /* CONFIG_PREEMPT_NOTIFIERS */ + +/** + * prepare_task_switch - prepare to switch tasks + * @rq: the runqueue preparing to switch + * @next: the task we are going to switch to. + * + * This is called with the rq lock held and interrupts off. It must + * be paired with a subsequent finish_task_switch after the context + * switch. + * + * prepare_task_switch sets up locking and calls architecture specific + * hooks. + */ +static inline void +prepare_task_switch(struct rq *rq, struct task_struct *prev, + struct task_struct *next) +{ + fire_sched_out_preempt_notifiers(prev, next); + prepare_lock_switch(rq, next); + prepare_arch_switch(next); +} + +/** + * finish_task_switch - clean up after a task-switch + * @rq: runqueue associated with task-switch + * @prev: the thread we just switched away from. + * + * finish_task_switch must be called after the context switch, paired + * with a prepare_task_switch call before the context switch. + * finish_task_switch will reconcile locking set up by prepare_task_switch, + * and do any other architecture-specific cleanup actions. + * + * Note that we may have delayed dropping an mm in context_switch(). If + * so, we finish that here outside of the runqueue lock. (Doing it + * with the lock held can cause deadlocks; see schedule() for + * details.) + */ +static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) + __releases(grq.lock) +{ + struct mm_struct *mm = rq->prev_mm; + long prev_state; + + rq->prev_mm = NULL; + + /* + * A task struct has one reference for the use as "current". + * If a task dies, then it sets TASK_DEAD in tsk->state and calls + * schedule one last time. The schedule call will never return, and + * the scheduled task must drop that reference. + * The test for TASK_DEAD must occur while the runqueue locks are + * still held, otherwise prev could be scheduled on another cpu, die + * there before we look at prev->state, and then the reference would + * be dropped twice. + * Manfred Spraul + */ + prev_state = prev->state; + finish_arch_switch(prev); +#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW + local_irq_disable(); +#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ + perf_event_task_sched_in(current); +#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW + local_irq_enable(); +#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ + finish_lock_switch(rq, prev); + + fire_sched_in_preempt_notifiers(current); + if (mm) + mmdrop(mm); + if (unlikely(prev_state == TASK_DEAD)) { + /* + * Remove function-return probe instances associated with this + * task and put them back on the free list. + */ + kprobe_flush_task(prev); + put_task_struct(prev); + } +} + +/** + * schedule_tail - first thing a freshly forked thread must call. + * @prev: the thread we just switched away from. + */ +asmlinkage void schedule_tail(struct task_struct *prev) + __releases(grq.lock) +{ + struct rq *rq = this_rq(); + + finish_task_switch(rq, prev); +#ifdef __ARCH_WANT_UNLOCKED_CTXSW + /* In this case, finish_task_switch does not reenable preemption */ + preempt_enable(); +#endif + if (current->set_child_tid) + put_user(current->pid, current->set_child_tid); +} + +/* + * context_switch - switch to the new MM and the new + * thread's register state. + */ +static inline void +context_switch(struct rq *rq, struct task_struct *prev, + struct task_struct *next) +{ + struct mm_struct *mm, *oldmm; + + prepare_task_switch(rq, prev, next); + trace_sched_switch(prev, next); + mm = next->mm; + oldmm = prev->active_mm; + /* + * For paravirt, this is coupled with an exit in switch_to to + * combine the page table reload and the switch backend into + * one hypercall. + */ + arch_start_context_switch(prev); + + if (likely(!mm)) { + next->active_mm = oldmm; + atomic_inc(&oldmm->mm_count); + enter_lazy_tlb(oldmm, next); + } else + switch_mm(oldmm, mm, next); + + if (likely(!prev->mm)) { + prev->active_mm = NULL; + rq->prev_mm = oldmm; + } + /* + * Since the runqueue lock will be released by the next + * task (which is an invalid locking op but in the case + * of the scheduler it's an obvious special-case), so we + * do an early lockdep release here: + */ +#ifndef __ARCH_WANT_UNLOCKED_CTXSW + spin_release(&grq.lock.dep_map, 1, _THIS_IP_); +#endif + + /* Here we just switch the register state and the stack. */ + switch_to(prev, next, prev); + + barrier(); + /* + * this_rq must be evaluated again because prev may have moved + * CPUs since it called schedule(), thus the 'rq' on its stack + * frame will be invalid. + */ + finish_task_switch(this_rq(), prev); +} + +/* + * nr_running, nr_uninterruptible and nr_context_switches: + * + * externally visible scheduler statistics: current number of runnable + * threads, current number of uninterruptible-sleeping threads, total + * number of context switches performed since bootup. All are measured + * without grabbing the grq lock but the occasional inaccurate result + * doesn't matter so long as it's positive. + */ +unsigned long nr_running(void) +{ + long nr = grq.nr_running; + + if (unlikely(nr < 0)) + nr = 0; + return (unsigned long)nr; +} + +unsigned long nr_uninterruptible(void) +{ + long nu = grq.nr_uninterruptible; + + if (unlikely(nu < 0)) + nu = 0; + return nu; +} + +unsigned long long nr_context_switches(void) +{ + long long ns = grq.nr_switches; + + /* This is of course impossible */ + if (unlikely(ns < 0)) + ns = 1; + return (long long)ns; +} + +unsigned long nr_iowait(void) +{ + unsigned long i, sum = 0; + + for_each_possible_cpu(i) + sum += atomic_read(&cpu_rq(i)->nr_iowait); + + return sum; +} + +unsigned long nr_iowait_cpu(int cpu) +{ + struct rq *this = cpu_rq(cpu); + return atomic_read(&this->nr_iowait); +} + +unsigned long nr_active(void) +{ + return nr_running() + nr_uninterruptible(); +} + +/* Beyond a task running on this CPU, load is equal everywhere on BFS */ +unsigned long this_cpu_load(void) +{ + return this_rq()->rq_running + + (queued_notrunning() + nr_uninterruptible()) / + (1 + num_online_cpus()); +} + +/* Variables and functions for calc_load */ +static unsigned long calc_load_update; +unsigned long avenrun[3]; +EXPORT_SYMBOL(avenrun); + +/** + * get_avenrun - get the load average array + * @loads: pointer to dest load array + * @offset: offset to add + * @shift: shift count to shift the result left + * + * These values are estimates at best, so no need for locking. + */ +void get_avenrun(unsigned long *loads, unsigned long offset, int shift) +{ + loads[0] = (avenrun[0] + offset) << shift; + loads[1] = (avenrun[1] + offset) << shift; + loads[2] = (avenrun[2] + offset) << shift; +} + +static unsigned long +calc_load(unsigned long load, unsigned long exp, unsigned long active) +{ + load *= exp; + load += active * (FIXED_1 - exp); + return load >> FSHIFT; +} + +/* + * calc_load - update the avenrun load estimates every LOAD_FREQ seconds. + */ +void calc_global_load(void) +{ + long active; + + if (time_before(jiffies, calc_load_update)) + return; + active = nr_active() * FIXED_1; + + avenrun[0] = calc_load(avenrun[0], EXP_1, active); + avenrun[1] = calc_load(avenrun[1], EXP_5, active); + avenrun[2] = calc_load(avenrun[2], EXP_15, active); + + calc_load_update = jiffies + LOAD_FREQ; +} + +DEFINE_PER_CPU(struct kernel_stat, kstat); + +EXPORT_PER_CPU_SYMBOL(kstat); + +/* + * On each tick, see what percentage of that tick was attributed to each + * component and add the percentage to the _pc values. Once a _pc value has + * accumulated one tick's worth, account for that. This means the total + * percentage of load components will always be 100 per tick. + */ +static void pc_idle_time(struct rq *rq, unsigned long pc) +{ + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); + + if (atomic_read(&rq->nr_iowait) > 0) { + rq->iowait_pc += pc; + if (rq->iowait_pc >= 100) { + rq->iowait_pc %= 100; + cpustat->iowait = cputime64_add(cpustat->iowait, tmp); + } + } else { + rq->idle_pc += pc; + if (rq->idle_pc >= 100) { + rq->idle_pc %= 100; + cpustat->idle = cputime64_add(cpustat->idle, tmp); + } + } +} + +static void +pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset, + unsigned long pc, unsigned long ns) +{ + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); + cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); + + p->stime_pc += pc; + if (p->stime_pc >= 100) { + p->stime_pc -= 100; + p->stime = cputime_add(p->stime, cputime_one_jiffy); + p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled); + account_group_system_time(p, cputime_one_jiffy); + acct_update_integrals(p); + } + p->sched_time += ns; + + if (hardirq_count() - hardirq_offset) + rq->irq_pc += pc; + else if (softirq_count()) { + rq->softirq_pc += pc; + if (rq->softirq_pc >= 100) { + rq->softirq_pc %= 100; + cpustat->softirq = cputime64_add(cpustat->softirq, tmp); + } + } else { + rq->system_pc += pc; + if (rq->system_pc >= 100) { + rq->system_pc %= 100; + cpustat->system = cputime64_add(cpustat->system, tmp); + } + } +} + +static void pc_user_time(struct rq *rq, struct task_struct *p, + unsigned long pc, unsigned long ns) +{ + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); + cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); + + p->utime_pc += pc; + if (p->utime_pc >= 100) { + p->utime_pc -= 100; + p->utime = cputime_add(p->utime, cputime_one_jiffy); + p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled); + account_group_user_time(p, cputime_one_jiffy); + acct_update_integrals(p); + } + p->sched_time += ns; + + if (TASK_NICE(p) > 0 || idleprio_task(p)) { + rq->nice_pc += pc; + if (rq->nice_pc >= 100) { + rq->nice_pc %= 100; + cpustat->nice = cputime64_add(cpustat->nice, tmp); + } + } else { + rq->user_pc += pc; + if (rq->user_pc >= 100) { + rq->user_pc %= 100; + cpustat->user = cputime64_add(cpustat->user, tmp); + } + } +} + +/* Convert nanoseconds to percentage of one tick. */ +#define NS_TO_PC(NS) (NS * 100 / JIFFIES_TO_NS(1)) + +/* + * This is called on clock ticks and on context switches. + * Bank in p->sched_time the ns elapsed since the last tick or switch. + * CPU scheduler quota accounting is also performed here in microseconds. + * The value returned from sched_clock() occasionally gives bogus values so + * some sanity checking is required. Time is supposed to be banked all the + * time so default to half a tick to make up for when sched_clock reverts + * to just returning jiffies, and for hardware that can't do tsc. + */ +static void +update_cpu_clock(struct rq *rq, struct task_struct *p, int tick) +{ + long account_ns = rq->clock - rq->timekeep_clock; + struct task_struct *idle = rq->idle; + unsigned long account_pc; + + if (unlikely(account_ns < 0)) + account_ns = 0; + + account_pc = NS_TO_PC(account_ns); + + if (tick) { + int user_tick = user_mode(get_irq_regs()); + + /* Accurate tick timekeeping */ + if (user_tick) + pc_user_time(rq, p, account_pc, account_ns); + else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) + pc_system_time(rq, p, HARDIRQ_OFFSET, + account_pc, account_ns); + else + pc_idle_time(rq, account_pc); + } else { + /* Accurate subtick timekeeping */ + if (p == idle) + pc_idle_time(rq, account_pc); + else + pc_user_time(rq, p, account_pc, account_ns); + } + + /* time_slice accounting is done in usecs to avoid overflow on 32bit */ + if (rq->rq_policy != SCHED_FIFO && p != idle) { + long time_diff = rq->clock - rq->rq_last_ran; + + /* + * There should be less than or equal to one jiffy worth, and not + * negative/overflow. time_diff is only used for internal scheduler + * time_slice accounting. + */ + if (unlikely(time_diff <= 0)) + time_diff = JIFFIES_TO_NS(1) / 2; + else if (unlikely(time_diff > JIFFIES_TO_NS(1))) + time_diff = JIFFIES_TO_NS(1); + + rq->rq_time_slice -= time_diff / 1000; + } + rq->rq_last_ran = rq->timekeep_clock = rq->clock; +} + +/* + * Return any ns on the sched_clock that have not yet been accounted in + * @p in case that task is currently running. + * + * Called with task_grq_lock() held. + */ +static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) +{ + u64 ns = 0; + + if (p == rq->curr) { + update_rq_clock(rq); + ns = rq->clock - rq->rq_last_ran; + if (unlikely((s64)ns < 0)) + ns = 0; + } + + return ns; +} + +unsigned long long task_delta_exec(struct task_struct *p) +{ + unsigned long flags; + struct rq *rq; + u64 ns; + + rq = task_grq_lock(p, &flags); + ns = do_task_delta_exec(p, rq); + task_grq_unlock(&flags); + + return ns; +} + +/* + * Return accounted runtime for the task. + * In case the task is currently running, return the runtime plus current's + * pending runtime that have not been accounted yet. + */ +unsigned long long task_sched_runtime(struct task_struct *p) +{ + unsigned long flags; + struct rq *rq; + u64 ns; + + rq = task_grq_lock(p, &flags); + ns = p->sched_time + do_task_delta_exec(p, rq); + task_grq_unlock(&flags); + + return ns; +} + +/* + * Return sum_exec_runtime for the thread group. + * In case the task is currently running, return the sum plus current's + * pending runtime that have not been accounted yet. + * + * Note that the thread group might have other running tasks as well, + * so the return value not includes other pending runtime that other + * running tasks might have. + */ +unsigned long long thread_group_sched_runtime(struct task_struct *p) +{ + struct task_cputime totals; + unsigned long flags; + struct rq *rq; + u64 ns; + + rq = task_grq_lock(p, &flags); + thread_group_cputime(p, &totals); + ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); + task_grq_unlock(&flags); + + return ns; +} + +/* Compatibility crap for removal */ +void account_user_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) +{ +} + +void account_idle_time(cputime_t cputime) +{ +} + +/* + * Account guest cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @cputime: the cpu time spent in virtual machine since the last update + * @cputime_scaled: cputime scaled by cpu frequency + */ +static void account_guest_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) +{ + cputime64_t tmp; + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + + tmp = cputime_to_cputime64(cputime); + + /* Add guest time to process. */ + p->utime = cputime_add(p->utime, cputime); + p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); + account_group_user_time(p, cputime); + p->gtime = cputime_add(p->gtime, cputime); + + /* Add guest time to cpustat. */ + if (TASK_NICE(p) > 0) { + cpustat->nice = cputime64_add(cpustat->nice, tmp); + cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); + } else { + cpustat->user = cputime64_add(cpustat->user, tmp); + cpustat->guest = cputime64_add(cpustat->guest, tmp); + } +} + +/* + * Account system cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @hardirq_offset: the offset to subtract from hardirq_count() + * @cputime: the cpu time spent in kernel space since the last update + * @cputime_scaled: cputime scaled by cpu frequency + * This is for guest only now. + */ +void account_system_time(struct task_struct *p, int hardirq_offset, + cputime_t cputime, cputime_t cputime_scaled) +{ + + if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) + account_guest_time(p, cputime, cputime_scaled); +} + +/* + * Account for involuntary wait time. + * @steal: the cpu time spent in involuntary wait + */ +void account_steal_time(cputime_t cputime) +{ + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + cputime64_t cputime64 = cputime_to_cputime64(cputime); + + cpustat->steal = cputime64_add(cpustat->steal, cputime64); +} + +/* + * Account for idle time. + * @cputime: the cpu time spent in idle wait + */ +static void account_idle_times(cputime_t cputime) +{ + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + cputime64_t cputime64 = cputime_to_cputime64(cputime); + struct rq *rq = this_rq(); + + if (atomic_read(&rq->nr_iowait) > 0) + cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); + else + cpustat->idle = cputime64_add(cpustat->idle, cputime64); +} + +#ifndef CONFIG_VIRT_CPU_ACCOUNTING + +void account_process_tick(struct task_struct *p, int user_tick) +{ +} + +/* + * Account multiple ticks of steal time. + * @p: the process from which the cpu time has been stolen + * @ticks: number of stolen ticks + */ +void account_steal_ticks(unsigned long ticks) +{ + account_steal_time(jiffies_to_cputime(ticks)); +} + +/* + * Account multiple ticks of idle time. + * @ticks: number of stolen ticks + */ +void account_idle_ticks(unsigned long ticks) +{ + account_idle_times(jiffies_to_cputime(ticks)); +} +#endif + +/* + * Functions to test for when SCHED_ISO tasks have used their allocated + * quota as real time scheduling and convert them back to SCHED_NORMAL. + * Where possible, the data is tested lockless, to avoid grabbing grq_lock + * because the occasional inaccurate result won't matter. However the + * tick data is only ever modified under lock. iso_refractory is only simply + * set to 0 or 1 so it's not worth grabbing the lock yet again for that. + */ +static void set_iso_refractory(void) +{ + grq.iso_refractory = 1; +} + +static void clear_iso_refractory(void) +{ + grq.iso_refractory = 0; +} + +/* + * Test if SCHED_ISO tasks have run longer than their alloted period as RT + * tasks and set the refractory flag if necessary. There is 10% hysteresis + * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a + * slow division. + */ +static unsigned int test_ret_isorefractory(struct rq *rq) +{ + if (likely(!grq.iso_refractory)) { + if (grq.iso_ticks > ISO_PERIOD * sched_iso_cpu) + set_iso_refractory(); + } else { + if (grq.iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) + clear_iso_refractory(); + } + return grq.iso_refractory; +} + +static void iso_tick(void) +{ + grq_lock(); + grq.iso_ticks += 100; + grq_unlock(); +} + +/* No SCHED_ISO task was running so decrease rq->iso_ticks */ +static inline void no_iso_tick(void) +{ + if (grq.iso_ticks) { + grq_lock(); + grq.iso_ticks -= grq.iso_ticks / ISO_PERIOD + 1; + if (unlikely(grq.iso_refractory && grq.iso_ticks < + ISO_PERIOD * (sched_iso_cpu * 115 / 128))) + clear_iso_refractory(); + grq_unlock(); + } +} + +static int rq_running_iso(struct rq *rq) +{ + return rq->rq_prio == ISO_PRIO; +} + +/* This manages tasks that have run out of timeslice during a scheduler_tick */ +static void task_running_tick(struct rq *rq) +{ + struct task_struct *p; + + /* + * If a SCHED_ISO task is running we increment the iso_ticks. In + * order to prevent SCHED_ISO tasks from causing starvation in the + * presence of true RT tasks we account those as iso_ticks as well. + */ + if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) { + if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100) + iso_tick(); + } else + no_iso_tick(); + + if (iso_queue(rq)) { + if (unlikely(test_ret_isorefractory(rq))) { + if (rq_running_iso(rq)) { + /* + * SCHED_ISO task is running as RT and limit + * has been hit. Force it to reschedule as + * SCHED_NORMAL by zeroing its time_slice + */ + rq->rq_time_slice = 0; + } + } + } + + /* SCHED_FIFO tasks never run out of timeslice. */ + if (rq_idle(rq) || rq->rq_time_slice > 0 || rq->rq_policy == SCHED_FIFO) + return; + + /* p->time_slice <= 0. We only modify task_struct under grq lock */ + p = rq->curr; + requeue_task(p); + grq_lock(); + set_tsk_need_resched(p); + grq_unlock(); +} + +void wake_up_idle_cpu(int cpu); + +/* + * This function gets called by the timer code, with HZ frequency. + * We call it with interrupts disabled. The data modified is all + * local to struct rq so we don't need to grab grq lock. + */ +void scheduler_tick(void) +{ + int cpu __maybe_unused = smp_processor_id(); + struct rq *rq = cpu_rq(cpu); + + sched_clock_tick(); + update_rq_clock(rq); + update_cpu_clock(rq, rq->curr, 1); + update_gjiffies(); + if (!rq_idle(rq)) + task_running_tick(rq); + else + no_iso_tick(); + perf_event_task_tick(rq->curr); +} + +notrace unsigned long get_parent_ip(unsigned long addr) +{ + if (in_lock_functions(addr)) { + addr = CALLER_ADDR2; + if (in_lock_functions(addr)) + addr = CALLER_ADDR3; + } + return addr; +} + +#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ + defined(CONFIG_PREEMPT_TRACER)) +void __kprobes add_preempt_count(int val) +{ +#ifdef CONFIG_DEBUG_PREEMPT + /* + * Underflow? + */ + if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) + return; +#endif + preempt_count() += val; +#ifdef CONFIG_DEBUG_PREEMPT + /* + * Spinlock count overflowing soon? + */ + DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= + PREEMPT_MASK - 10); +#endif + if (preempt_count() == val) + trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); +} +EXPORT_SYMBOL(add_preempt_count); + +void __kprobes sub_preempt_count(int val) +{ +#ifdef CONFIG_DEBUG_PREEMPT + /* + * Underflow? + */ + if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) + return; + /* + * Is the spinlock portion underflowing? + */ + if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && + !(preempt_count() & PREEMPT_MASK))) + return; +#endif + + if (preempt_count() == val) + trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); + preempt_count() -= val; +} +EXPORT_SYMBOL(sub_preempt_count); +#endif + +/* + * Deadline is "now" in gjiffies + (offset by priority). Setting the deadline + * is the key to everything. It distributes cpu fairly amongst tasks of the + * same nice value, it proportions cpu according to nice level, it means the + * task that last woke up the longest ago has the earliest deadline, thus + * ensuring that interactive tasks get low latency on wake up. The CPU + * proportion works out to the square of the virtual deadline difference, so + * this equation will give nice 19 3% CPU compared to nice 0. + */ +static inline int prio_deadline_diff(int user_prio) +{ + return (prio_ratios[user_prio] * rr_interval * HZ / (1000 * 100)) ? : 1; +} + +static inline int task_deadline_diff(struct task_struct *p) +{ + return prio_deadline_diff(TASK_USER_PRIO(p)); +} + +static inline int static_deadline_diff(int static_prio) +{ + return prio_deadline_diff(USER_PRIO(static_prio)); +} + +static inline int longest_deadline_diff(void) +{ + return prio_deadline_diff(39); +} + +/* + * The time_slice is only refilled when it is empty and that is when we set a + * new deadline. + */ +static inline void time_slice_expired(struct task_struct *p) +{ + reset_first_time_slice(p); + p->time_slice = timeslice(); + p->deadline = gjiffies + task_deadline_diff(p); +} + +static inline void check_deadline(struct task_struct *p) +{ + if (p->time_slice <= 0) + time_slice_expired(p); +} + +/* + * O(n) lookup of all tasks in the global runqueue. The real brainfuck + * of lock contention and O(n). It's not really O(n) as only the queued, + * but not running tasks are scanned, and is O(n) queued in the worst case + * scenario only because the right task can be found before scanning all of + * them. + * Tasks are selected in this order: + * Real time tasks are selected purely by their static priority and in the + * order they were queued, so the lowest value idx, and the first queued task + * of that priority value is chosen. + * If no real time tasks are found, the SCHED_ISO priority is checked, and + * all SCHED_ISO tasks have the same priority value, so they're selected by + * the earliest deadline value. + * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the + * earliest deadline. + * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are + * selected by the earliest deadline. + */ +static inline struct +task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle) +{ + unsigned long dl, earliest_deadline = 0; /* Initialise to silence compiler */ + struct task_struct *p, *edt = idle; + unsigned int cpu = cpu_of(rq); + struct list_head *queue; + int idx = 0; + +retry: + idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx); + if (idx >= PRIO_LIMIT) + goto out; + queue = grq.queue + idx; + list_for_each_entry(p, queue, run_list) { + /* Make sure cpu affinity is ok */ + if (online_cpus(p) && !cpu_isset(cpu, p->cpus_allowed)) + continue; + if (idx < MAX_RT_PRIO) { + /* We found an rt task */ + edt = p; + goto out_take; + } + + dl = p->deadline + cache_distance(task_rq(p), rq, p); + + /* + * No rt tasks. Find the earliest deadline task. Now we're in + * O(n) territory. This is what we silenced the compiler for: + * edt will always start as idle. + */ + if (edt == idle || + deadline_before(dl, earliest_deadline)) { + earliest_deadline = dl; + edt = p; + } + } + if (edt == idle) { + if (++idx < PRIO_LIMIT) + goto retry; + goto out; + } +out_take: + take_task(rq, edt); +out: + return edt; +} + +/* + * Print scheduling while atomic bug: + */ +static noinline void __schedule_bug(struct task_struct *prev) +{ + struct pt_regs *regs = get_irq_regs(); + + printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", + prev->comm, prev->pid, preempt_count()); + + debug_show_held_locks(prev); + print_modules(); + if (irqs_disabled()) + print_irqtrace_events(prev); + + if (regs) + show_regs(regs); + else + dump_stack(); +} + +/* + * Various schedule()-time debugging checks and statistics: + */ +static inline void schedule_debug(struct task_struct *prev) +{ + /* + * Test if we are atomic. Since do_exit() needs to call into + * schedule() atomically, we ignore that path for now. + * Otherwise, whine if we are scheduling when we should not be. + */ + if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) + __schedule_bug(prev); + + profile_hit(SCHED_PROFILING, __builtin_return_address(0)); + + schedstat_inc(this_rq(), sched_count); +#ifdef CONFIG_SCHEDSTATS + if (unlikely(prev->lock_depth >= 0)) { + schedstat_inc(this_rq(), bkl_count); + schedstat_inc(prev, sched_info.bkl_count); + } +#endif +} + +/* + * The currently running task's information is all stored in rq local data + * which is only modified by the local CPU, thereby allowing the data to be + * changed without grabbing the grq lock. + */ +static inline void set_rq_task(struct rq *rq, struct task_struct *p) +{ + rq->rq_time_slice = p->time_slice; + rq->rq_deadline = p->deadline; + rq->rq_last_ran = p->last_ran; + rq->rq_policy = p->policy; + rq->rq_prio = p->prio; + if (p != rq->idle) + rq->rq_running = 1; + else + rq->rq_running = 0; +} + +static void reset_rq_task(struct rq *rq, struct task_struct *p) +{ + rq->rq_policy = p->policy; + rq->rq_prio = p->prio; +} + +/* + * schedule() is the main scheduler function. + */ +asmlinkage void __sched schedule(void) +{ + struct task_struct *prev, *next, *idle; + unsigned long *switch_count; + int deactivate, cpu; + struct rq *rq; + +need_resched: + preempt_disable(); + + cpu = smp_processor_id(); + rq = cpu_rq(cpu); + idle = rq->idle; + rcu_note_context_switch(cpu); + prev = rq->curr; + switch_count = &prev->nivcsw; + + release_kernel_lock(prev); +need_resched_nonpreemptible: + + deactivate = 0; + schedule_debug(prev); + + local_irq_disable(); + update_rq_clock(rq); + update_cpu_clock(rq, prev, 0); + rq->skip_clock_update = 0; + + grq_lock(); + clear_tsk_need_resched(prev); + + if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { + if (unlikely(signal_pending_state(prev->state, prev))) + prev->state = TASK_RUNNING; + else + deactivate = 1; + switch_count = &prev->nvcsw; + } + + if (prev != idle) { + /* Update all the information stored on struct rq */ + prev->time_slice = rq->rq_time_slice; + prev->deadline = rq->rq_deadline; + check_deadline(prev); + return_task(prev, deactivate); + /* Task changed affinity off this cpu */ + if (unlikely(!cpus_intersects(prev->cpus_allowed, + cpumask_of_cpu(cpu)))) { + if (online_cpus(prev)) + resched_suitable_idle(prev); + } + } + + if (likely(queued_notrunning())) { + next = earliest_deadline_task(rq, idle); + } else { + next = idle; + schedstat_inc(rq, sched_goidle); + } + + prefetch(next); + prefetch_stack(next); + + if (task_idle(next)) + set_cpuidle_map(cpu); + else + clear_cpuidle_map(cpu); + + prev->last_ran = rq->clock; + + if (likely(prev != next)) { + sched_info_switch(prev, next); + perf_event_task_sched_out(prev, next); + + set_rq_task(rq, next); + grq.nr_switches++; + prev->oncpu = 0; + next->oncpu = 1; + rq->curr = next; + ++*switch_count; + + context_switch(rq, prev, next); /* unlocks the grq */ + /* + * the context switch might have flipped the stack from under + * us, hence refresh the local variables. + */ + cpu = smp_processor_id(); + rq = cpu_rq(cpu); + idle = rq->idle; + } else + grq_unlock_irq(); + + if (unlikely(reacquire_kernel_lock(current) < 0)) { + prev = rq->curr; + switch_count = &prev->nivcsw; + goto need_resched_nonpreemptible; + } + + preempt_enable_no_resched(); + if (need_resched()) + goto need_resched; +} +EXPORT_SYMBOL(schedule); + +#ifdef CONFIG_SMP +int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) +{ + unsigned int cpu; + struct rq *rq; + +#ifdef CONFIG_DEBUG_PAGEALLOC + /* + * Need to access the cpu field knowing that + * DEBUG_PAGEALLOC could have unmapped it if + * the mutex owner just released it and exited. + */ + if (probe_kernel_address(&owner->cpu, cpu)) + return 0; +#else + cpu = owner->cpu; +#endif + + /* + * Even if the access succeeded (likely case), + * the cpu field may no longer be valid. + */ + if (cpu >= nr_cpumask_bits) + return 0; + + /* + * We need to validate that we can do a + * get_cpu() and that we have the percpu area. + */ + if (!cpu_online(cpu)) + return 0; + + rq = cpu_rq(cpu); + + for (;;) { + /* + * Owner changed, break to re-assess state. + */ + if (lock->owner != owner) + break; + + /* + * Is that owner really running on that cpu? + */ + if (task_thread_info(rq->curr) != owner || need_resched()) + return 0; + + cpu_relax(); + } + + return 1; +} +#endif + +#ifdef CONFIG_PREEMPT +/* + * this is the entry point to schedule() from in-kernel preemption + * off of preempt_enable. Kernel preemptions off return from interrupt + * occur there and call schedule directly. + */ +asmlinkage void __sched preempt_schedule(void) +{ + struct thread_info *ti = current_thread_info(); + + /* + * If there is a non-zero preempt_count or interrupts are disabled, + * we do not want to preempt the current task. Just return.. + */ + if (likely(ti->preempt_count || irqs_disabled())) + return; + + do { + add_preempt_count(PREEMPT_ACTIVE); + schedule(); + sub_preempt_count(PREEMPT_ACTIVE); + + /* + * Check again in case we missed a preemption opportunity + * between schedule and now. + */ + barrier(); + } while (need_resched()); +} +EXPORT_SYMBOL(preempt_schedule); + +/* + * this is the entry point to schedule() from kernel preemption + * off of irq context. + * Note, that this is called and return with irqs disabled. This will + * protect us against recursive calling from irq. + */ +asmlinkage void __sched preempt_schedule_irq(void) +{ + struct thread_info *ti = current_thread_info(); + + /* Catch callers which need to be fixed */ + BUG_ON(ti->preempt_count || !irqs_disabled()); + + do { + add_preempt_count(PREEMPT_ACTIVE); + local_irq_enable(); + schedule(); + local_irq_disable(); + sub_preempt_count(PREEMPT_ACTIVE); + + /* + * Check again in case we missed a preemption opportunity + * between schedule and now. + */ + barrier(); + } while (need_resched()); +} + +#endif /* CONFIG_PREEMPT */ + +int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, + void *key) +{ + return try_to_wake_up(curr->private, mode, wake_flags); +} +EXPORT_SYMBOL(default_wake_function); + +/* + * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just + * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve + * number) then we wake all the non-exclusive tasks and one exclusive task. + * + * There are circumstances in which we can try to wake a task which has already + * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns + * zero in this (rare) case, and we handle it by continuing to scan the queue. + */ +static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, int wake_flags, void *key) +{ + struct list_head *tmp, *next; + + list_for_each_safe(tmp, next, &q->task_list) { + wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); + unsigned int flags = curr->flags; + + if (curr->func(curr, mode, wake_flags, key) && + (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) + break; + } +} + +/** + * __wake_up - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: is directly passed to the wakeup function + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void __wake_up(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, void *key) +{ + unsigned long flags; + + spin_lock_irqsave(&q->lock, flags); + __wake_up_common(q, mode, nr_exclusive, 0, key); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(__wake_up); + +/* + * Same as __wake_up but called with the spinlock in wait_queue_head_t held. + */ +void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) +{ + __wake_up_common(q, mode, 1, 0, NULL); +} +EXPORT_SYMBOL_GPL(__wake_up_locked); + +void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) +{ + __wake_up_common(q, mode, 1, 0, key); +} + +/** + * __wake_up_sync_key - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: opaque value to be passed to wakeup targets + * + * The sync wakeup differs that the waker knows that it will schedule + * away soon, so while the target thread will be woken up, it will not + * be migrated to another CPU - ie. the two threads are 'synchronised' + * with each other. This can prevent needless bouncing between CPUs. + * + * On UP it can prevent extra preemption. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, void *key) +{ + unsigned long flags; + int wake_flags = WF_SYNC; + + if (unlikely(!q)) + return; + + if (unlikely(!nr_exclusive)) + wake_flags = 0; + + spin_lock_irqsave(&q->lock, flags); + __wake_up_common(q, mode, nr_exclusive, wake_flags, key); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL_GPL(__wake_up_sync_key); + +/** + * __wake_up_sync - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * + * The sync wakeup differs that the waker knows that it will schedule + * away soon, so while the target thread will be woken up, it will not + * be migrated to another CPU - ie. the two threads are 'synchronised' + * with each other. This can prevent needless bouncing between CPUs. + * + * On UP it can prevent extra preemption. + */ +void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) +{ + unsigned long flags; + int sync = 1; + + if (unlikely(!q)) + return; + + if (unlikely(!nr_exclusive)) + sync = 0; + + spin_lock_irqsave(&q->lock, flags); + __wake_up_common(q, mode, nr_exclusive, sync, NULL); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ + +/** + * complete: - signals a single thread waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up a single thread waiting on this completion. Threads will be + * awakened in the same order in which they were queued. + * + * See also complete_all(), wait_for_completion() and related routines. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void complete(struct completion *x) +{ + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done++; + __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); + spin_unlock_irqrestore(&x->wait.lock, flags); +} +EXPORT_SYMBOL(complete); + +/** + * complete_all: - signals all threads waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up all threads waiting on this particular completion event. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void complete_all(struct completion *x) +{ + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done += UINT_MAX/2; + __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); + spin_unlock_irqrestore(&x->wait.lock, flags); +} +EXPORT_SYMBOL(complete_all); + +static inline long __sched +do_wait_for_common(struct completion *x, long timeout, int state) +{ + if (!x->done) { + DECLARE_WAITQUEUE(wait, current); + + __add_wait_queue_tail_exclusive(&x->wait, &wait); + do { + if (signal_pending_state(state, current)) { + timeout = -ERESTARTSYS; + break; + } + __set_current_state(state); + spin_unlock_irq(&x->wait.lock); + timeout = schedule_timeout(timeout); + spin_lock_irq(&x->wait.lock); + } while (!x->done && timeout); + __remove_wait_queue(&x->wait, &wait); + if (!x->done) + return timeout; + } + x->done--; + return timeout ?: 1; +} + +static long __sched +wait_for_common(struct completion *x, long timeout, int state) +{ + might_sleep(); + + spin_lock_irq(&x->wait.lock); + timeout = do_wait_for_common(x, timeout, state); + spin_unlock_irq(&x->wait.lock); + return timeout; +} + +/** + * wait_for_completion: - waits for completion of a task + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It is NOT + * interruptible and there is no timeout. + * + * See also similar routines (i.e. wait_for_completion_timeout()) with timeout + * and interrupt capability. Also see complete(). + */ +void __sched wait_for_completion(struct completion *x) +{ + wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion); + +/** + * wait_for_completion_timeout: - waits for completion of a task (w/timeout) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. The timeout is in jiffies. It is not + * interruptible. + */ +unsigned long __sched +wait_for_completion_timeout(struct completion *x, unsigned long timeout) +{ + return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion_timeout); + +/** + * wait_for_completion_interruptible: - waits for completion of a task (w/intr) + * @x: holds the state of this particular completion + * + * This waits for completion of a specific task to be signaled. It is + * interruptible. + */ +int __sched wait_for_completion_interruptible(struct completion *x) +{ + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); + if (t == -ERESTARTSYS) + return t; + return 0; +} +EXPORT_SYMBOL(wait_for_completion_interruptible); + +/** + * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. It is interruptible. The timeout is in jiffies. + */ +unsigned long __sched +wait_for_completion_interruptible_timeout(struct completion *x, + unsigned long timeout) +{ + return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); + +/** + * wait_for_completion_killable: - waits for completion of a task (killable) + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It can be + * interrupted by a kill signal. + */ +int __sched wait_for_completion_killable(struct completion *x) +{ + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); + if (t == -ERESTARTSYS) + return t; + return 0; +} +EXPORT_SYMBOL(wait_for_completion_killable); + +/** + * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be + * signaled or for a specified timeout to expire. It can be + * interrupted by a kill signal. The timeout is in jiffies. + */ +unsigned long __sched +wait_for_completion_killable_timeout(struct completion *x, + unsigned long timeout) +{ + return wait_for_common(x, timeout, TASK_KILLABLE); +} +EXPORT_SYMBOL(wait_for_completion_killable_timeout); + +/** + * try_wait_for_completion - try to decrement a completion without blocking + * @x: completion structure + * + * Returns: 0 if a decrement cannot be done without blocking + * 1 if a decrement succeeded. + * + * If a completion is being used as a counting completion, + * attempt to decrement the counter without blocking. This + * enables us to avoid waiting if the resource the completion + * is protecting is not available. + */ +bool try_wait_for_completion(struct completion *x) +{ + unsigned long flags; + int ret = 1; + + spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; + else + x->done--; + spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; +} +EXPORT_SYMBOL(try_wait_for_completion); + +/** + * completion_done - Test to see if a completion has any waiters + * @x: completion structure + * + * Returns: 0 if there are waiters (wait_for_completion() in progress) + * 1 if there are no waiters. + * + */ +bool completion_done(struct completion *x) +{ + unsigned long flags; + int ret = 1; + + spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; + spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; +} +EXPORT_SYMBOL(completion_done); + +static long __sched +sleep_on_common(wait_queue_head_t *q, int state, long timeout) +{ + unsigned long flags; + wait_queue_t wait; + + init_waitqueue_entry(&wait, current); + + __set_current_state(state); + + spin_lock_irqsave(&q->lock, flags); + __add_wait_queue(q, &wait); + spin_unlock(&q->lock); + timeout = schedule_timeout(timeout); + spin_lock_irq(&q->lock); + __remove_wait_queue(q, &wait); + spin_unlock_irqrestore(&q->lock, flags); + + return timeout; +} + +void __sched interruptible_sleep_on(wait_queue_head_t *q) +{ + sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); +} +EXPORT_SYMBOL(interruptible_sleep_on); + +long __sched +interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) +{ + return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); +} +EXPORT_SYMBOL(interruptible_sleep_on_timeout); + +void __sched sleep_on(wait_queue_head_t *q) +{ + sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); +} +EXPORT_SYMBOL(sleep_on); + +long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) +{ + return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); +} +EXPORT_SYMBOL(sleep_on_timeout); + +#ifdef CONFIG_RT_MUTEXES + +/* + * rt_mutex_setprio - set the current priority of a task + * @p: task + * @prio: prio value (kernel-internal form) + * + * This function changes the 'effective' priority of a task. It does + * not touch ->normal_prio like __setscheduler(). + * + * Used by the rt_mutex code to implement priority inheritance logic. + */ +void rt_mutex_setprio(struct task_struct *p, int prio) +{ + unsigned long flags; + int queued, oldprio; + struct rq *rq; + + BUG_ON(prio < 0 || prio > MAX_PRIO); + + rq = task_grq_lock(p, &flags); + + oldprio = p->prio; + queued = task_queued(p); + if (queued) + dequeue_task(p); + p->prio = prio; + if (task_running(p) && prio > oldprio) + resched_task(p); + if (queued) { + enqueue_task(p); + try_preempt(p, rq); + } + + task_grq_unlock(&flags); +} + +#endif + +/* + * Adjust the deadline for when the priority is to change, before it's + * changed. + */ +static inline void adjust_deadline(struct task_struct *p, int new_prio) +{ + p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p); +} + +void set_user_nice(struct task_struct *p, long nice) +{ + int queued, new_static, old_static; + unsigned long flags; + struct rq *rq; + + if (TASK_NICE(p) == nice || nice < -20 || nice > 19) + return; + new_static = NICE_TO_PRIO(nice); + /* + * We have to be careful, if called from sys_setpriority(), + * the task might be in the middle of scheduling on another CPU. + */ + rq = time_task_grq_lock(p, &flags); + /* + * The RT priorities are set via sched_setscheduler(), but we still + * allow the 'normal' nice value to be set - but as expected + * it wont have any effect on scheduling until the task is + * not SCHED_NORMAL/SCHED_BATCH: + */ + if (has_rt_policy(p)) { + p->static_prio = new_static; + goto out_unlock; + } + queued = task_queued(p); + if (queued) + dequeue_task(p); + + adjust_deadline(p, new_static); + old_static = p->static_prio; + p->static_prio = new_static; + p->prio = effective_prio(p); + + if (queued) { + enqueue_task(p); + if (new_static < old_static) + try_preempt(p, rq); + } else if (task_running(p)) { + reset_rq_task(rq, p); + if (old_static < new_static) + resched_task(p); + } +out_unlock: + task_grq_unlock(&flags); +} +EXPORT_SYMBOL(set_user_nice); + +/* + * can_nice - check if a task can reduce its nice value + * @p: task + * @nice: nice value + */ +int can_nice(const struct task_struct *p, const int nice) +{ + /* convert nice value [19,-20] to rlimit style value [1,40] */ + int nice_rlim = 20 - nice; + + return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || + capable(CAP_SYS_NICE)); +} + +#ifdef __ARCH_WANT_SYS_NICE + +/* + * sys_nice - change the priority of the current process. + * @increment: priority increment + * + * sys_setpriority is a more generic, but much slower function that + * does similar things. + */ +SYSCALL_DEFINE1(nice, int, increment) +{ + long nice, retval; + + /* + * Setpriority might change our priority at the same moment. + * We don't have to worry. Conceptually one call occurs first + * and we have a single winner. + */ + if (increment < -40) + increment = -40; + if (increment > 40) + increment = 40; + + nice = TASK_NICE(current) + increment; + if (nice < -20) + nice = -20; + if (nice > 19) + nice = 19; + + if (increment < 0 && !can_nice(current, nice)) + return -EPERM; + + retval = security_task_setnice(current, nice); + if (retval) + return retval; + + set_user_nice(current, nice); + return 0; +} + +#endif + +/** + * task_prio - return the priority value of a given task. + * @p: the task in question. + * + * This is the priority value as seen by users in /proc. + * RT tasks are offset by -100. Normal tasks are centered around 1, value goes + * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO). + */ +int task_prio(const struct task_struct *p) +{ + int delta, prio = p->prio - MAX_RT_PRIO; + + /* rt tasks and iso tasks */ + if (prio <= 0) + goto out; + + delta = p->deadline - gjiffies; + delta = delta * 40 / longest_deadline_diff(); + if (delta > 0 && delta <= 80) + prio += delta; + if (idleprio_task(p)) + prio += 40; +out: + return prio; +} + +/** + * task_nice - return the nice value of a given task. + * @p: the task in question. + */ +int task_nice(const struct task_struct *p) +{ + return TASK_NICE(p); +} +EXPORT_SYMBOL_GPL(task_nice); + +/** + * idle_cpu - is a given cpu idle currently? + * @cpu: the processor in question. + */ +int idle_cpu(int cpu) +{ + return cpu_curr(cpu) == cpu_rq(cpu)->idle; +} + +/** + * idle_task - return the idle task for a given cpu. + * @cpu: the processor in question. + */ +struct task_struct *idle_task(int cpu) +{ + return cpu_rq(cpu)->idle; +} + +/** + * find_process_by_pid - find a process with a matching PID value. + * @pid: the pid in question. + */ +static inline struct task_struct *find_process_by_pid(pid_t pid) +{ + return pid ? find_task_by_vpid(pid) : current; +} + +/* Actually do priority change: must hold grq lock. */ +static void +__setscheduler(struct task_struct *p, struct rq *rq, int policy, int prio) +{ + int oldrtprio, oldprio; + + BUG_ON(task_queued(p)); + + p->policy = policy; + oldrtprio = p->rt_priority; + p->rt_priority = prio; + p->normal_prio = normal_prio(p); + oldprio = p->prio; + /* we are holding p->pi_lock already */ + p->prio = rt_mutex_getprio(p); + if (task_running(p)) { + reset_rq_task(rq, p); + /* Resched only if we might now be preempted */ + if (p->prio > oldprio || p->rt_priority > oldrtprio) + resched_task(p); + } +} + +/* + * check the target process has a UID that matches the current process's + */ +static bool check_same_owner(struct task_struct *p) +{ + const struct cred *cred = current_cred(), *pcred; + bool match; + + rcu_read_lock(); + pcred = __task_cred(p); + match = (cred->euid == pcred->euid || + cred->euid == pcred->uid); + rcu_read_unlock(); + return match; +} + +static int __sched_setscheduler(struct task_struct *p, int policy, + struct sched_param *param, bool user) +{ + struct sched_param zero_param = { .sched_priority = 0 }; + int queued, retval, oldpolicy = -1; + unsigned long flags, rlim_rtprio = 0; + int reset_on_fork; + struct rq *rq; + + /* may grab non-irq protected spin_locks */ + BUG_ON(in_interrupt()); + + if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) { + unsigned long lflags; + + if (!lock_task_sighand(p, &lflags)) + return -ESRCH; + rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); + unlock_task_sighand(p, &lflags); + if (rlim_rtprio) + goto recheck; + /* + * If the caller requested an RT policy without having the + * necessary rights, we downgrade the policy to SCHED_ISO. + * We also set the parameter to zero to pass the checks. + */ + policy = SCHED_ISO; + param = &zero_param; + } +recheck: + /* double check policy once rq lock held */ + if (policy < 0) { + reset_on_fork = p->sched_reset_on_fork; + policy = oldpolicy = p->policy; + } else { + reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); + policy &= ~SCHED_RESET_ON_FORK; + + if (!SCHED_RANGE(policy)) + return -EINVAL; + } + + /* + * Valid priorities for SCHED_FIFO and SCHED_RR are + * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and + * SCHED_BATCH is 0. + */ + if (param->sched_priority < 0 || + (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || + (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) + return -EINVAL; + if (is_rt_policy(policy) != (param->sched_priority != 0)) + return -EINVAL; + + /* + * Allow unprivileged RT tasks to decrease priority: + */ + if (user && !capable(CAP_SYS_NICE)) { + if (is_rt_policy(policy)) { + /* can't set/change the rt policy */ + if (policy != p->policy && !rlim_rtprio) + return -EPERM; + + /* can't increase priority */ + if (param->sched_priority > p->rt_priority && + param->sched_priority > rlim_rtprio) + return -EPERM; + } else { + switch (p->policy) { + /* + * Can only downgrade policies but not back to + * SCHED_NORMAL + */ + case SCHED_ISO: + if (policy == SCHED_ISO) + goto out; + if (policy == SCHED_NORMAL) + return -EPERM; + break; + case SCHED_BATCH: + if (policy == SCHED_BATCH) + goto out; + if (policy != SCHED_IDLEPRIO) + return -EPERM; + break; + case SCHED_IDLEPRIO: + if (policy == SCHED_IDLEPRIO) + goto out; + return -EPERM; + default: + break; + } + } + + /* can't change other user's priorities */ + if (!check_same_owner(p)) + return -EPERM; + + /* Normal users shall not reset the sched_reset_on_fork flag */ + if (p->sched_reset_on_fork && !reset_on_fork) + return -EPERM; + } + + retval = security_task_setscheduler(p, policy, param); + if (retval) + return retval; + /* + * make sure no PI-waiters arrive (or leave) while we are + * changing the priority of the task: + */ + raw_spin_lock_irqsave(&p->pi_lock, flags); + /* + * To be able to change p->policy safely, the apropriate + * runqueue lock must be held. + */ + rq = __task_grq_lock(p); + /* recheck policy now with rq lock held */ + if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { + policy = oldpolicy = -1; + __task_grq_unlock(); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + goto recheck; + } + update_rq_clock(rq); + p->sched_reset_on_fork = reset_on_fork; + + queued = task_queued(p); + if (queued) + dequeue_task(p); + __setscheduler(p, rq, policy, param->sched_priority); + if (queued) { + enqueue_task(p); + try_preempt(p, rq); + } + __task_grq_unlock(); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + + rt_mutex_adjust_pi(p); +out: + return 0; +} + +/** + * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * NOTE that the task may be already dead. + */ +int sched_setscheduler(struct task_struct *p, int policy, + struct sched_param *param) +{ + return __sched_setscheduler(p, policy, param, true); +} + +EXPORT_SYMBOL_GPL(sched_setscheduler); + +/** + * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Just like sched_setscheduler, only don't bother checking if the + * current context has permission. For example, this is needed in + * stop_machine(): we create temporary high priority worker threads, + * but our caller might not have that capability. + */ +int sched_setscheduler_nocheck(struct task_struct *p, int policy, + struct sched_param *param) +{ + return __sched_setscheduler(p, policy, param, false); +} + +static int +do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) +{ + struct sched_param lparam; + struct task_struct *p; + int retval; + + if (!param || pid < 0) + return -EINVAL; + if (copy_from_user(&lparam, param, sizeof(struct sched_param))) + return -EFAULT; + + rcu_read_lock(); + retval = -ESRCH; + p = find_process_by_pid(pid); + if (p != NULL) + retval = sched_setscheduler(p, policy, &lparam); + rcu_read_unlock(); + + return retval; +} + +/** + * sys_sched_setscheduler - set/change the scheduler policy and RT priority + * @pid: the pid in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + */ +asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, + struct sched_param __user *param) +{ + /* negative values for policy are not valid */ + if (policy < 0) + return -EINVAL; + + return do_sched_setscheduler(pid, policy, param); +} + +/** + * sys_sched_setparam - set/change the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the new RT priority. + */ +SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) +{ + return do_sched_setscheduler(pid, -1, param); +} + +/** + * sys_sched_getscheduler - get the policy (scheduling class) of a thread + * @pid: the pid in question. + */ +SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) +{ + struct task_struct *p; + int retval = -EINVAL; + + if (pid < 0) + goto out_nounlock; + + retval = -ESRCH; + rcu_read_lock(); + p = find_process_by_pid(pid); + if (p) { + retval = security_task_getscheduler(p); + if (!retval) + retval = p->policy; + } + rcu_read_unlock(); + +out_nounlock: + return retval; +} + +/** + * sys_sched_getscheduler - get the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the RT priority. + */ +SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) +{ + struct sched_param lp; + struct task_struct *p; + int retval = -EINVAL; + + if (!param || pid < 0) + goto out_nounlock; + + rcu_read_lock(); + p = find_process_by_pid(pid); + retval = -ESRCH; + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + lp.sched_priority = p->rt_priority; + rcu_read_unlock(); + + /* + * This one might sleep, we cannot do it with a spinlock held ... + */ + retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; + +out_nounlock: + return retval; + +out_unlock: + rcu_read_unlock(); + return retval; +} + +long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) +{ + cpumask_var_t cpus_allowed, new_mask; + struct task_struct *p; + int retval; + + get_online_cpus(); + rcu_read_lock(); + + p = find_process_by_pid(pid); + if (!p) { + rcu_read_unlock(); + put_online_cpus(); + return -ESRCH; + } + + /* Prevent p going away */ + get_task_struct(p); + rcu_read_unlock(); + + if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_put_task; + } + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_free_cpus_allowed; + } + retval = -EPERM; + if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) + goto out_unlock; + + retval = security_task_setscheduler(p, 0, NULL); + if (retval) + goto out_unlock; + + cpuset_cpus_allowed(p, cpus_allowed); + cpumask_and(new_mask, in_mask, cpus_allowed); +again: + retval = set_cpus_allowed_ptr(p, new_mask); + + if (!retval) { + cpuset_cpus_allowed(p, cpus_allowed); + if (!cpumask_subset(new_mask, cpus_allowed)) { + /* + * We must have raced with a concurrent cpuset + * update. Just reset the cpus_allowed to the + * cpuset's cpus_allowed + */ + cpumask_copy(new_mask, cpus_allowed); + goto again; + } + } +out_unlock: + free_cpumask_var(new_mask); +out_free_cpus_allowed: + free_cpumask_var(cpus_allowed); +out_put_task: + put_task_struct(p); + put_online_cpus(); + return retval; +} + +static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, + cpumask_t *new_mask) +{ + if (len < sizeof(cpumask_t)) { + memset(new_mask, 0, sizeof(cpumask_t)); + } else if (len > sizeof(cpumask_t)) { + len = sizeof(cpumask_t); + } + return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; +} + + +/** + * sys_sched_setaffinity - set the cpu affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to the new cpu mask + */ +SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) +{ + cpumask_var_t new_mask; + int retval; + + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) + return -ENOMEM; + + retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); + if (retval == 0) + retval = sched_setaffinity(pid, new_mask); + free_cpumask_var(new_mask); + return retval; +} + +long sched_getaffinity(pid_t pid, cpumask_t *mask) +{ + struct task_struct *p; + unsigned long flags; + struct rq *rq; + int retval; + + get_online_cpus(); + rcu_read_lock(); + + retval = -ESRCH; + p = find_process_by_pid(pid); + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + rq = task_grq_lock(p, &flags); + cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); + task_grq_unlock(&flags); + +out_unlock: + rcu_read_unlock(); + put_online_cpus(); + + return retval; +} + +/** + * sys_sched_getaffinity - get the cpu affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to hold the current cpu mask + */ +SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) +{ + int ret; + cpumask_var_t mask; + + if ((len * BITS_PER_BYTE) < nr_cpu_ids) + return -EINVAL; + if (len & (sizeof(unsigned long)-1)) + return -EINVAL; + + if (!alloc_cpumask_var(&mask, GFP_KERNEL)) + return -ENOMEM; + + ret = sched_getaffinity(pid, mask); + if (ret == 0) { + size_t retlen = min_t(size_t, len, cpumask_size()); + + if (copy_to_user(user_mask_ptr, mask, retlen)) + ret = -EFAULT; + else + ret = retlen; + } + free_cpumask_var(mask); + + return ret; +} + +/** + * sys_sched_yield - yield the current processor to other threads. + * + * This function yields the current CPU to other tasks. It does this by + * scheduling away the current task. If it still has the earliest deadline + * it will be scheduled again as the next task. + */ +SYSCALL_DEFINE0(sched_yield) +{ + struct task_struct *p; + struct rq *rq; + + p = current; + rq = task_grq_lock_irq(p); + schedstat_inc(rq, yld_count); + requeue_task(p); + + /* + * Since we are going to call schedule() anyway, there's + * no need to preempt or enable interrupts: + */ + __release(grq.lock); + spin_release(&grq.lock.dep_map, 1, _THIS_IP_); + do_raw_spin_unlock(&grq.lock); + preempt_enable_no_resched(); + + schedule(); + + return 0; +} + +static inline int should_resched(void) +{ + return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); +} + +static void __cond_resched(void) +{ + /* NOT a real fix but will make voluntary preempt work. 馬鹿な事 */ + if (unlikely(system_state != SYSTEM_RUNNING)) + return; + + add_preempt_count(PREEMPT_ACTIVE); + schedule(); + sub_preempt_count(PREEMPT_ACTIVE); +} + +int __sched _cond_resched(void) +{ + if (should_resched()) { + __cond_resched(); + return 1; + } + return 0; +} +EXPORT_SYMBOL(_cond_resched); + +/* + * __cond_resched_lock() - if a reschedule is pending, drop the given lock, + * call schedule, and on return reacquire the lock. + * + * This works OK both with and without CONFIG_PREEMPT. We do strange low-level + * operations here to prevent schedule() from being called twice (once via + * spin_unlock(), once by hand). + */ +int __cond_resched_lock(spinlock_t *lock) +{ + int resched = should_resched(); + int ret = 0; + + lockdep_assert_held(lock); + + if (spin_needbreak(lock) || resched) { + spin_unlock(lock); + if (resched) + __cond_resched(); + else + cpu_relax(); + ret = 1; + spin_lock(lock); + } + return ret; +} +EXPORT_SYMBOL(__cond_resched_lock); + +int __sched __cond_resched_softirq(void) +{ + BUG_ON(!in_softirq()); + + if (should_resched()) { + local_bh_enable(); + __cond_resched(); + local_bh_disable(); + return 1; + } + return 0; +} +EXPORT_SYMBOL(__cond_resched_softirq); + +/** + * yield - yield the current processor to other threads. + * + * This is a shortcut for kernel-space yielding - it marks the + * thread runnable and calls sys_sched_yield(). + */ +void __sched yield(void) +{ + set_current_state(TASK_RUNNING); + sys_sched_yield(); +} +EXPORT_SYMBOL(yield); + +/* + * This task is about to go to sleep on IO. Increment rq->nr_iowait so + * that process accounting knows that this is a task in IO wait state. + * + * But don't do that if it is a deliberate, throttling IO wait (this task + * has set its backing_dev_info: the queue against which it should throttle) + */ +void __sched io_schedule(void) +{ + struct rq *rq = raw_rq(); + + delayacct_blkio_start(); + atomic_inc(&rq->nr_iowait); + current->in_iowait = 1; + schedule(); + current->in_iowait = 0; + atomic_dec(&rq->nr_iowait); + delayacct_blkio_end(); +} +EXPORT_SYMBOL(io_schedule); + +long __sched io_schedule_timeout(long timeout) +{ + struct rq *rq = raw_rq(); + long ret; + + delayacct_blkio_start(); + atomic_inc(&rq->nr_iowait); + current->in_iowait = 1; + ret = schedule_timeout(timeout); + current->in_iowait = 0; + atomic_dec(&rq->nr_iowait); + delayacct_blkio_end(); + return ret; +} + +/** + * sys_sched_get_priority_max - return maximum RT priority. + * @policy: scheduling class. + * + * this syscall returns the maximum rt_priority that can be used + * by a given scheduling class. + */ +SYSCALL_DEFINE1(sched_get_priority_max, int, policy) +{ + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = MAX_USER_RT_PRIO-1; + break; + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_ISO: + case SCHED_IDLEPRIO: + ret = 0; + break; + } + return ret; +} + +/** + * sys_sched_get_priority_min - return minimum RT priority. + * @policy: scheduling class. + * + * this syscall returns the minimum rt_priority that can be used + * by a given scheduling class. + */ +SYSCALL_DEFINE1(sched_get_priority_min, int, policy) +{ + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = 1; + break; + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_ISO: + case SCHED_IDLEPRIO: + ret = 0; + break; + } + return ret; +} + +/** + * sys_sched_rr_get_interval - return the default timeslice of a process. + * @pid: pid of the process. + * @interval: userspace pointer to the timeslice value. + * + * this syscall writes the default timeslice value of a given process + * into the user-space timespec buffer. A value of '0' means infinity. + */ +SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, + struct timespec __user *, interval) +{ + struct task_struct *p; + unsigned int time_slice; + unsigned long flags; + struct rq *rq; + int retval; + struct timespec t; + + if (pid < 0) + return -EINVAL; + + retval = -ESRCH; + rcu_read_lock(); + p = find_process_by_pid(pid); + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + rq = task_grq_lock(p, &flags); + time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p)); + task_grq_unlock(&flags); + + rcu_read_unlock(); + t = ns_to_timespec(time_slice); + retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; + return retval; + +out_unlock: + rcu_read_unlock(); + return retval; +} + +static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; + +void sched_show_task(struct task_struct *p) +{ + unsigned long free = 0; + unsigned state; + + state = p->state ? __ffs(p->state) + 1 : 0; + printk(KERN_INFO "%-13.13s %c", p->comm, + state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); +#if BITS_PER_LONG == 32 + if (state == TASK_RUNNING) + printk(KERN_CONT " running "); + else + printk(KERN_CONT " %08lx ", thread_saved_pc(p)); +#else + if (state == TASK_RUNNING) + printk(KERN_CONT " running task "); + else + printk(KERN_CONT " %016lx ", thread_saved_pc(p)); +#endif +#ifdef CONFIG_DEBUG_STACK_USAGE + free = stack_not_used(p); +#endif + printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, + task_pid_nr(p), task_pid_nr(p->real_parent), + (unsigned long)task_thread_info(p)->flags); + + show_stack(p, NULL); +} + +void show_state_filter(unsigned long state_filter) +{ + struct task_struct *g, *p; + +#if BITS_PER_LONG == 32 + printk(KERN_INFO + " task PC stack pid father\n"); +#else + printk(KERN_INFO + " task PC stack pid father\n"); +#endif + read_lock(&tasklist_lock); + do_each_thread(g, p) { + /* + * reset the NMI-timeout, listing all files on a slow + * console might take alot of time: + */ + touch_nmi_watchdog(); + if (!state_filter || (p->state & state_filter)) + sched_show_task(p); + } while_each_thread(g, p); + + touch_all_softlockup_watchdogs(); + + read_unlock(&tasklist_lock); + /* + * Only show locks if all tasks are dumped: + */ + if (!state_filter) + debug_show_all_locks(); +} + +/** + * init_idle - set up an idle thread for a given CPU + * @idle: task in question + * @cpu: cpu the idle task belongs to + * + * NOTE: this function does not set the idle thread's NEED_RESCHED + * flag, to make booting more robust. + */ +void init_idle(struct task_struct *idle, int cpu) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + time_grq_lock(rq, &flags); + idle->last_ran = rq->clock; + idle->state = TASK_RUNNING; + /* Setting prio to illegal value shouldn't matter when never queued */ + idle->prio = PRIO_LIMIT; + set_rq_task(rq, idle); + idle->cpus_allowed = cpumask_of_cpu(cpu); + set_task_cpu(idle, cpu); + rq->curr = rq->idle = idle; + idle->oncpu = 1; + set_cpuidle_map(cpu); + grq_unlock_irqrestore(&flags); + + /* Set the preempt count _outside_ the spinlocks! */ +#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) + task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); +#else + task_thread_info(idle)->preempt_count = 0; +#endif + ftrace_graph_init_task(idle); +} + +/* + * In a system that switches off the HZ timer nohz_cpu_mask + * indicates which cpus entered this state. This is used + * in the rcu update to wait only for active cpus. For system + * which do not switch off the HZ timer nohz_cpu_mask should + * always be CPU_BITS_NONE. + */ +cpumask_var_t nohz_cpu_mask; + +#ifdef CONFIG_SMP +#ifdef CONFIG_NO_HZ +static struct { + atomic_t load_balancer; + cpumask_var_t cpu_mask; + cpumask_var_t ilb_grp_nohz_mask; +} nohz ____cacheline_aligned = { + .load_balancer = ATOMIC_INIT(-1), +}; + +int get_nohz_load_balancer(void) +{ + return atomic_read(&nohz.load_balancer); +} + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * lowest_flag_domain - Return lowest sched_domain containing flag. + * @cpu: The cpu whose lowest level of sched domain is to + * be returned. + * @flag: The flag to check for the lowest sched_domain + * for the given cpu. + * + * Returns the lowest sched_domain of a cpu which contains the given flag. + */ +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd; + + for_each_domain(cpu, sd) + if (sd && (sd->flags & flag)) + break; + + return sd; +} + +/** + * for_each_flag_domain - Iterates over sched_domains containing the flag. + * @cpu: The cpu whose domains we're iterating over. + * @sd: variable holding the value of the power_savings_sd + * for cpu. + * @flag: The flag to filter the sched_domains to be iterated. + * + * Iterates over all the scheduler domains for a given cpu that has the 'flag' + * set, starting from the lowest sched_domain to the highest. + */ +#define for_each_flag_domain(cpu, sd, flag) \ + for (sd = lowest_flag_domain(cpu, flag); \ + (sd && (sd->flags & flag)); sd = sd->parent) + +/** + * is_semi_idle_group - Checks if the given sched_group is semi-idle. + * @ilb_group: group to be checked for semi-idleness + * + * Returns: 1 if the group is semi-idle. 0 otherwise. + * + * We define a sched_group to be semi idle if it has atleast one idle-CPU + * and atleast one non-idle CPU. This helper function checks if the given + * sched_group is semi-idle or not. + */ +static inline int is_semi_idle_group(struct sched_group *ilb_group) +{ + cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, + sched_group_cpus(ilb_group)); + + /* + * A sched_group is semi-idle when it has atleast one busy cpu + * and atleast one idle cpu. + */ + if (cpumask_empty(nohz.ilb_grp_nohz_mask)) + return 0; + + if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) + return 0; + + return 1; +} + +/** + * find_new_ilb - Finds the optimum idle load balancer for nomination. + * @cpu: The cpu which is nominating a new idle_load_balancer. + * + * Returns: Returns the id of the idle load balancer if it exists, + * Else, returns >= nr_cpu_ids. + * + * This algorithm picks the idle load balancer such that it belongs to a + * semi-idle powersavings sched_domain. The idea is to try and avoid + * completely idle packages/cores just for the purpose of idle load balancing + * when there are other idle cpu's which are better suited for that job. + */ +static int find_new_ilb(int cpu) +{ + struct sched_domain *sd; + struct sched_group *ilb_group; + + /* + * Have idle load balancer selection from semi-idle packages only + * when power-aware load balancing is enabled + */ + if (!(sched_smt_power_savings || sched_mc_power_savings)) + goto out_done; + + /* + * Optimize for the case when we have no idle CPUs or only one + * idle CPU. Don't walk the sched_domain hierarchy in such cases + */ + if (cpumask_weight(nohz.cpu_mask) < 2) + goto out_done; + + for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { + ilb_group = sd->groups; + + do { + if (is_semi_idle_group(ilb_group)) + return cpumask_first(nohz.ilb_grp_nohz_mask); + + ilb_group = ilb_group->next; + + } while (ilb_group != sd->groups); + } + +out_done: + return cpumask_first(nohz.cpu_mask); +} +#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ +static inline int find_new_ilb(int call_cpu) +{ + return cpumask_first(nohz.cpu_mask); +} +#endif + +static inline void resched_cpu(int cpu) +{ + unsigned long flags; + + grq_lock_irqsave(&flags); + resched_task(cpu_curr(cpu)); + grq_unlock_irqrestore(&flags); +} + +/* + * This routine will try to nominate the ilb (idle load balancing) + * owner among the cpus whose ticks are stopped. ilb owner will do the idle + * load balancing on behalf of all those cpus. If all the cpus in the system + * go into this tickless mode, then there will be no ilb owner (as there is + * no need for one) and all the cpus will sleep till the next wakeup event + * arrives... + * + * For the ilb owner, tick is not stopped. And this tick will be used + * for idle load balancing. ilb owner will still be part of + * nohz.cpu_mask.. + * + * While stopping the tick, this cpu will become the ilb owner if there + * is no other owner. And will be the owner till that cpu becomes busy + * or if all cpus in the system stop their ticks at which point + * there is no need for ilb owner. + * + * When the ilb owner becomes busy, it nominates another owner, during the + * next busy scheduler_tick() + */ +int select_nohz_load_balancer(int stop_tick) +{ + int cpu = smp_processor_id(); + + if (stop_tick) { + cpu_rq(cpu)->in_nohz_recently = 1; + + if (!cpu_active(cpu)) { + if (atomic_read(&nohz.load_balancer) != cpu) + return 0; + + /* + * If we are going offline and still the leader, + * give up! + */ + if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) + BUG(); + + return 0; + } + + cpumask_set_cpu(cpu, nohz.cpu_mask); + + /* time for ilb owner also to sleep */ + if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { + if (atomic_read(&nohz.load_balancer) == cpu) + atomic_set(&nohz.load_balancer, -1); + return 0; + } + + if (atomic_read(&nohz.load_balancer) == -1) { + /* make me the ilb owner */ + if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) + return 1; + } else if (atomic_read(&nohz.load_balancer) == cpu) { + int new_ilb; + + if (!(sched_smt_power_savings || + sched_mc_power_savings)) + return 1; + /* + * Check to see if there is a more power-efficient + * ilb. + */ + new_ilb = find_new_ilb(cpu); + if (new_ilb < nr_cpu_ids && new_ilb != cpu) { + atomic_set(&nohz.load_balancer, -1); + resched_cpu(new_ilb); + return 0; + } + return 1; + } + } else { + if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) + return 0; + + cpumask_clear_cpu(cpu, nohz.cpu_mask); + + if (atomic_read(&nohz.load_balancer) == cpu) + if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) + BUG(); + } + return 0; +} + +/* + * When add_timer_on() enqueues a timer into the timer wheel of an + * idle CPU then this timer might expire before the next timer event + * which is scheduled to wake up that CPU. In case of a completely + * idle system the next event might even be infinite time into the + * future. wake_up_idle_cpu() ensures that the CPU is woken up and + * leaves the inner idle loop so the newly added timer is taken into + * account when the CPU goes back to idle and evaluates the timer + * wheel for the next timer event. + */ +void wake_up_idle_cpu(int cpu) +{ + struct task_struct *idle; + struct rq *rq; + + if (cpu == smp_processor_id()) + return; + + rq = cpu_rq(cpu); + idle = rq->idle; + + /* + * This is safe, as this function is called with the timer + * wheel base lock of (cpu) held. When the CPU is on the way + * to idle and has not yet set rq->curr to idle then it will + * be serialised on the timer wheel base lock and take the new + * timer into account automatically. + */ + if (unlikely(rq->curr != idle)) + return; + + /* + * We can set TIF_RESCHED on the idle task of the other CPU + * lockless. The worst case is that the other CPU runs the + * idle task through an additional NOOP schedule() + */ + set_tsk_need_resched(idle); + + /* NEED_RESCHED must be visible before we test polling */ + smp_mb(); + if (!tsk_is_polling(idle)) + smp_send_reschedule(cpu); +} + +/* Broken crap on 2.6.35(.0) */ +int nohz_ratelimit(int cpu) +{ + return 0; +} +#endif /* CONFIG_NO_HZ */ + +/* + * Change a given task's CPU affinity. Migrate the thread to a + * proper CPU and schedule it away if the CPU it's executing on + * is removed from the allowed bitmask. + * + * NOTE: the caller must have a valid reference to the task, the + * task must not exit() & deallocate itself prematurely. The + * call is not atomic; no spinlocks may be held. + */ +int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) +{ + unsigned long flags; + int running_wrong = 0; + int queued = 0; + struct rq *rq; + int ret = 0; + + rq = task_grq_lock(p, &flags); + + if (!cpumask_intersects(new_mask, cpu_active_mask)) { + ret = -EINVAL; + goto out; + } + + if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && + !cpumask_equal(&p->cpus_allowed, new_mask))) { + ret = -EINVAL; + goto out; + } + + queued = task_queued(p); + + cpumask_copy(&p->cpus_allowed, new_mask); + + /* Can the task run on the task's current CPU? If so, we're done */ + if (cpumask_test_cpu(task_cpu(p), new_mask)) + goto out; + + if (task_running(p)) { + /* Task is running on the wrong cpu now, reschedule it. */ + if (rq == this_rq()) { + set_tsk_need_resched(p); + running_wrong = 1; + } else + resched_task(p); + } else + set_task_cpu(p, cpumask_any_and(cpu_active_mask, new_mask)); + +out: + if (queued) + try_preempt(p, rq); + task_grq_unlock(&flags); + + if (running_wrong) + _cond_resched(); + + return ret; +} +EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); + +#ifdef CONFIG_HOTPLUG_CPU +/* + * Reschedule a task if it's on a dead CPU. + */ +void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) +{ + unsigned long flags; + struct rq *rq, *dead_rq; + + dead_rq = cpu_rq(dead_cpu); + rq = task_grq_lock(p, &flags); + if (rq == dead_rq && task_running(p)) + resched_task(p); + task_grq_unlock(&flags); + +} + +/* + * Schedules idle task to be the next runnable task on current CPU. + * It does so by boosting its priority to highest possible. + * Used by CPU offline code. + */ +void sched_idle_next(void) +{ + int this_cpu = smp_processor_id(); + struct rq *rq = cpu_rq(this_cpu); + struct task_struct *idle = rq->idle; + unsigned long flags; + + /* cpu has to be offline */ + BUG_ON(cpu_online(this_cpu)); + + /* + * Strictly not necessary since rest of the CPUs are stopped by now + * and interrupts disabled on the current cpu. + */ + grq_lock_irqsave(&flags); + + __setscheduler(idle, rq, SCHED_FIFO, MAX_RT_PRIO - 1); + + activate_idle_task(idle); + set_tsk_need_resched(rq->curr); + + grq_unlock_irqrestore(&flags); +} + +/* + * Ensures that the idle task is using init_mm right before its cpu goes + * offline. + */ +void idle_task_exit(void) +{ + struct mm_struct *mm = current->active_mm; + + BUG_ON(cpu_online(smp_processor_id())); + + if (mm != &init_mm) + switch_mm(mm, &init_mm, current); + mmdrop(mm); +} + +#endif /* CONFIG_HOTPLUG_CPU */ + +#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) + +static struct ctl_table sd_ctl_dir[] = { + { + .procname = "sched_domain", + .mode = 0555, + }, + {} +}; + +static struct ctl_table sd_ctl_root[] = { + { + .procname = "kernel", + .mode = 0555, + .child = sd_ctl_dir, + }, + {} +}; + +static struct ctl_table *sd_alloc_ctl_entry(int n) +{ + struct ctl_table *entry = + kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); + + return entry; +} + +static void sd_free_ctl_entry(struct ctl_table **tablep) +{ + struct ctl_table *entry; + + /* + * In the intermediate directories, both the child directory and + * procname are dynamically allocated and could fail but the mode + * will always be set. In the lowest directory the names are + * static strings and all have proc handlers. + */ + for (entry = *tablep; entry->mode; entry++) { + if (entry->child) + sd_free_ctl_entry(&entry->child); + if (entry->proc_handler == NULL) + kfree(entry->procname); + } + + kfree(*tablep); + *tablep = NULL; +} + +static void +set_table_entry(struct ctl_table *entry, + const char *procname, void *data, int maxlen, + mode_t mode, proc_handler *proc_handler) +{ + entry->procname = procname; + entry->data = data; + entry->maxlen = maxlen; + entry->mode = mode; + entry->proc_handler = proc_handler; +} + +static struct ctl_table * +sd_alloc_ctl_domain_table(struct sched_domain *sd) +{ + struct ctl_table *table = sd_alloc_ctl_entry(13); + + if (table == NULL) + return NULL; + + set_table_entry(&table[0], "min_interval", &sd->min_interval, + sizeof(long), 0644, proc_doulongvec_minmax); + set_table_entry(&table[1], "max_interval", &sd->max_interval, + sizeof(long), 0644, proc_doulongvec_minmax); + set_table_entry(&table[2], "busy_idx", &sd->busy_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[3], "idle_idx", &sd->idle_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[5], "wake_idx", &sd->wake_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[7], "busy_factor", &sd->busy_factor, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[9], "cache_nice_tries", + &sd->cache_nice_tries, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[10], "flags", &sd->flags, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[11], "name", sd->name, + CORENAME_MAX_SIZE, 0444, proc_dostring); + /* &table[12] is terminator */ + + return table; +} + +static ctl_table *sd_alloc_ctl_cpu_table(int cpu) +{ + struct ctl_table *entry, *table; + struct sched_domain *sd; + int domain_num = 0, i; + char buf[32]; + + for_each_domain(cpu, sd) + domain_num++; + entry = table = sd_alloc_ctl_entry(domain_num + 1); + if (table == NULL) + return NULL; + + i = 0; + for_each_domain(cpu, sd) { + snprintf(buf, 32, "domain%d", i); + entry->procname = kstrdup(buf, GFP_KERNEL); + entry->mode = 0555; + entry->child = sd_alloc_ctl_domain_table(sd); + entry++; + i++; + } + return table; +} + +static struct ctl_table_header *sd_sysctl_header; +static void register_sched_domain_sysctl(void) +{ + int i, cpu_num = num_possible_cpus(); + struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); + char buf[32]; + + WARN_ON(sd_ctl_dir[0].child); + sd_ctl_dir[0].child = entry; + + if (entry == NULL) + return; + + for_each_possible_cpu(i) { + snprintf(buf, 32, "cpu%d", i); + entry->procname = kstrdup(buf, GFP_KERNEL); + entry->mode = 0555; + entry->child = sd_alloc_ctl_cpu_table(i); + entry++; + } + + WARN_ON(sd_sysctl_header); + sd_sysctl_header = register_sysctl_table(sd_ctl_root); +} + +/* may be called multiple times per register */ +static void unregister_sched_domain_sysctl(void) +{ + if (sd_sysctl_header) + unregister_sysctl_table(sd_sysctl_header); + sd_sysctl_header = NULL; + if (sd_ctl_dir[0].child) + sd_free_ctl_entry(&sd_ctl_dir[0].child); +} +#else +static void register_sched_domain_sysctl(void) +{ +} +static void unregister_sched_domain_sysctl(void) +{ +} +#endif + +static void set_rq_online(struct rq *rq) +{ + if (!rq->online) { + cpumask_set_cpu(cpu_of(rq), rq->rd->online); + rq->online = 1; + } +} + +static void set_rq_offline(struct rq *rq) +{ + if (rq->online) { + cpumask_clear_cpu(cpu_of(rq), rq->rd->online); + rq->online = 0; + } +} + +/* + * migration_call - callback that gets triggered when a CPU is added. + */ +static int __cpuinit +migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) +{ +#ifdef CONFIG_HOTPLUG_CPU + struct task_struct *idle; +#endif + int cpu = (long)hcpu; + unsigned long flags; + struct rq *rq = cpu_rq(cpu); + + switch (action) { + + case CPU_UP_PREPARE: + case CPU_UP_PREPARE_FROZEN: + break; + + case CPU_ONLINE: + case CPU_ONLINE_FROZEN: + /* Update our root-domain */ + grq_lock_irqsave(&flags); + if (rq->rd) { + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + + set_rq_online(rq); + } + grq_unlock_irqrestore(&flags); + break; + +#ifdef CONFIG_HOTPLUG_CPU + case CPU_DEAD: + case CPU_DEAD_FROZEN: + idle = rq->idle; + /* Idle task back to normal (off runqueue, low prio) */ + grq_lock_irq(); + return_task(idle, 1); + idle->static_prio = MAX_PRIO; + __setscheduler(idle, rq, SCHED_NORMAL, 0); + idle->prio = PRIO_LIMIT; + set_rq_task(rq, idle); + update_rq_clock(rq); + grq_unlock_irq(); + break; + + case CPU_DYING: + case CPU_DYING_FROZEN: + /* Update our root-domain */ + grq_lock_irqsave(&flags); + if (rq->rd) { + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + set_rq_offline(rq); + } + grq_unlock_irqrestore(&flags); + break; +#endif + } + return NOTIFY_OK; +} + +/* + * Register at high priority so that task migration (migrate_all_tasks) + * happens before everything else. This has to be lower priority than + * the notifier in the perf_counter subsystem, though. + */ +static struct notifier_block __cpuinitdata migration_notifier = { + .notifier_call = migration_call, + .priority = 10 +}; + +int __init migration_init(void) +{ + void *cpu = (void *)(long)smp_processor_id(); + int err; + + /* Start one for the boot CPU: */ + err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); + BUG_ON(err == NOTIFY_BAD); + migration_call(&migration_notifier, CPU_ONLINE, cpu); + register_cpu_notifier(&migration_notifier); + + return 0; +} +early_initcall(migration_init); +#endif + +#ifdef CONFIG_SMP + +#ifdef CONFIG_SCHED_DEBUG + +static __read_mostly int sched_domain_debug_enabled; + +static int __init sched_domain_debug_setup(char *str) +{ + sched_domain_debug_enabled = 1; + + return 0; +} +early_param("sched_debug", sched_domain_debug_setup); + +static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, + struct cpumask *groupmask) +{ + struct sched_group *group = sd->groups; + char str[256]; + + cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); + cpumask_clear(groupmask); + + printk(KERN_DEBUG "%*s domain %d: ", level, "", level); + + if (!(sd->flags & SD_LOAD_BALANCE)) { + printk("does not load-balance\n"); + if (sd->parent) + printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" + " has parent"); + return -1; + } + + printk(KERN_CONT "span %s level %s\n", str, sd->name); + + if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { + printk(KERN_ERR "ERROR: domain->span does not contain " + "CPU%d\n", cpu); + } + if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { + printk(KERN_ERR "ERROR: domain->groups does not contain" + " CPU%d\n", cpu); + } + + printk(KERN_DEBUG "%*s groups:", level + 1, ""); + do { + if (!group) { + printk("\n"); + printk(KERN_ERR "ERROR: group is NULL\n"); + break; + } + + if (!group->cpu_power) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: domain->cpu_power not " + "set\n"); + break; + } + + if (!cpumask_weight(sched_group_cpus(group))) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: empty group\n"); + break; + } + + if (cpumask_intersects(groupmask, sched_group_cpus(group))) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: repeated CPUs\n"); + break; + } + + cpumask_or(groupmask, groupmask, sched_group_cpus(group)); + + cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); + + printk(KERN_CONT " %s", str); + if (group->cpu_power != SCHED_LOAD_SCALE) { + printk(KERN_CONT " (cpu_power = %d)", + group->cpu_power); + } + + group = group->next; + } while (group != sd->groups); + printk(KERN_CONT "\n"); + + if (!cpumask_equal(sched_domain_span(sd), groupmask)) + printk(KERN_ERR "ERROR: groups don't span domain->span\n"); + + if (sd->parent && + !cpumask_subset(groupmask, sched_domain_span(sd->parent))) + printk(KERN_ERR "ERROR: parent span is not a superset " + "of domain->span\n"); + return 0; +} + +static void sched_domain_debug(struct sched_domain *sd, int cpu) +{ + cpumask_var_t groupmask; + int level = 0; + + if (!sched_domain_debug_enabled) + return; + + if (!sd) { + printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); + return; + } + + printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); + + if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { + printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); + return; + } + + for (;;) { + if (sched_domain_debug_one(sd, cpu, level, groupmask)) + break; + level++; + sd = sd->parent; + if (!sd) + break; + } + free_cpumask_var(groupmask); +} +#else /* !CONFIG_SCHED_DEBUG */ +# define sched_domain_debug(sd, cpu) do { } while (0) +#endif /* CONFIG_SCHED_DEBUG */ + +static int sd_degenerate(struct sched_domain *sd) +{ + if (cpumask_weight(sched_domain_span(sd)) == 1) + return 1; + + /* Following flags need at least 2 groups */ + if (sd->flags & (SD_LOAD_BALANCE | + SD_BALANCE_NEWIDLE | + SD_BALANCE_FORK | + SD_BALANCE_EXEC | + SD_SHARE_CPUPOWER | + SD_SHARE_PKG_RESOURCES)) { + if (sd->groups != sd->groups->next) + return 0; + } + + /* Following flags don't use groups */ + if (sd->flags & (SD_WAKE_AFFINE)) + return 0; + + return 1; +} + +static int +sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) +{ + unsigned long cflags = sd->flags, pflags = parent->flags; + + if (sd_degenerate(parent)) + return 1; + + if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) + return 0; + + /* Flags needing groups don't count if only 1 group in parent */ + if (parent->groups == parent->groups->next) { + pflags &= ~(SD_LOAD_BALANCE | + SD_BALANCE_NEWIDLE | + SD_BALANCE_FORK | + SD_BALANCE_EXEC | + SD_SHARE_CPUPOWER | + SD_SHARE_PKG_RESOURCES); + if (nr_node_ids == 1) + pflags &= ~SD_SERIALIZE; + } + if (~cflags & pflags) + return 0; + + return 1; +} + +static void free_rootdomain(struct root_domain *rd) +{ + synchronize_sched(); + + free_cpumask_var(rd->rto_mask); + free_cpumask_var(rd->online); + free_cpumask_var(rd->span); + kfree(rd); +} + +static void rq_attach_root(struct rq *rq, struct root_domain *rd) +{ + struct root_domain *old_rd = NULL; + unsigned long flags; + + grq_lock_irqsave(&flags); + + if (rq->rd) { + old_rd = rq->rd; + + if (cpumask_test_cpu(cpu_of(rq), old_rd->online)) + set_rq_offline(rq); + + cpumask_clear_cpu(cpu_of(rq), old_rd->span); + + /* + * If we dont want to free the old_rt yet then + * set old_rd to NULL to skip the freeing later + * in this function: + */ + if (!atomic_dec_and_test(&old_rd->refcount)) + old_rd = NULL; + } + + atomic_inc(&rd->refcount); + rq->rd = rd; + + cpumask_set_cpu(cpu_of(rq), rd->span); + if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) + set_rq_online(rq); + + grq_unlock_irqrestore(&flags); + + if (old_rd) + free_rootdomain(old_rd); +} + +static int init_rootdomain(struct root_domain *rd, bool bootmem) +{ + gfp_t gfp = GFP_KERNEL; + + memset(rd, 0, sizeof(*rd)); + + if (bootmem) + gfp = GFP_NOWAIT; + + if (!alloc_cpumask_var(&rd->span, gfp)) + goto out; + if (!alloc_cpumask_var(&rd->online, gfp)) + goto free_span; + if (!alloc_cpumask_var(&rd->rto_mask, gfp)) + goto free_online; + + return 0; + +free_online: + free_cpumask_var(rd->online); +free_span: + free_cpumask_var(rd->span); +out: + return -ENOMEM; +} + +static void init_defrootdomain(void) +{ + init_rootdomain(&def_root_domain, true); + + atomic_set(&def_root_domain.refcount, 1); +} + +static struct root_domain *alloc_rootdomain(void) +{ + struct root_domain *rd; + + rd = kmalloc(sizeof(*rd), GFP_KERNEL); + if (!rd) + return NULL; + + if (init_rootdomain(rd, false) != 0) { + kfree(rd); + return NULL; + } + + return rd; +} + +/* + * Attach the domain 'sd' to 'cpu' as its base domain. Callers must + * hold the hotplug lock. + */ +static void +cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct sched_domain *tmp; + + for (tmp = sd; tmp; tmp = tmp->parent) + tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); + + /* Remove the sched domains which do not contribute to scheduling. */ + for (tmp = sd; tmp; ) { + struct sched_domain *parent = tmp->parent; + if (!parent) + break; + + if (sd_parent_degenerate(tmp, parent)) { + tmp->parent = parent->parent; + if (parent->parent) + parent->parent->child = tmp; + } else + tmp = tmp->parent; + } + + if (sd && sd_degenerate(sd)) { + sd = sd->parent; + if (sd) + sd->child = NULL; + } + + sched_domain_debug(sd, cpu); + + rq_attach_root(rq, rd); + rcu_assign_pointer(rq->sd, sd); +} + +/* cpus with isolated domains */ +static cpumask_var_t cpu_isolated_map; + +/* Setup the mask of cpus configured for isolated domains */ +static int __init isolated_cpu_setup(char *str) +{ + alloc_bootmem_cpumask_var(&cpu_isolated_map); + cpulist_parse(str, cpu_isolated_map); + return 1; +} + +__setup("isolcpus=", isolated_cpu_setup); + +/* + * init_sched_build_groups takes the cpumask we wish to span, and a pointer + * to a function which identifies what group(along with sched group) a CPU + * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids + * (due to the fact that we keep track of groups covered with a struct cpumask). + * + * init_sched_build_groups will build a circular linked list of the groups + * covered by the given span, and will set each group's ->cpumask correctly, + * and ->cpu_power to 0. + */ +static void +init_sched_build_groups(const struct cpumask *span, + const struct cpumask *cpu_map, + int (*group_fn)(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, + struct cpumask *tmpmask), + struct cpumask *covered, struct cpumask *tmpmask) +{ + struct sched_group *first = NULL, *last = NULL; + int i; + + cpumask_clear(covered); + + for_each_cpu(i, span) { + struct sched_group *sg; + int group = group_fn(i, cpu_map, &sg, tmpmask); + int j; + + if (cpumask_test_cpu(i, covered)) + continue; + + cpumask_clear(sched_group_cpus(sg)); + sg->cpu_power = 0; + + for_each_cpu(j, span) { + if (group_fn(j, cpu_map, NULL, tmpmask) != group) + continue; + + cpumask_set_cpu(j, covered); + cpumask_set_cpu(j, sched_group_cpus(sg)); + } + if (!first) + first = sg; + if (last) + last->next = sg; + last = sg; + } + last->next = first; +} + +#define SD_NODES_PER_DOMAIN 16 + +#ifdef CONFIG_NUMA + +/** + * find_next_best_node - find the next node to include in a sched_domain + * @node: node whose sched_domain we're building + * @used_nodes: nodes already in the sched_domain + * + * Find the next node to include in a given scheduling domain. Simply + * finds the closest node not already in the @used_nodes map. + * + * Should use nodemask_t. + */ +static int find_next_best_node(int node, nodemask_t *used_nodes) +{ + int i, n, val, min_val, best_node = 0; + + min_val = INT_MAX; + + for (i = 0; i < nr_node_ids; i++) { + /* Start at @node */ + n = (node + i) % nr_node_ids; + + if (!nr_cpus_node(n)) + continue; + + /* Skip already used nodes */ + if (node_isset(n, *used_nodes)) + continue; + + /* Simple min distance search */ + val = node_distance(node, n); + + if (val < min_val) { + min_val = val; + best_node = n; + } + } + + node_set(best_node, *used_nodes); + return best_node; +} + +/** + * sched_domain_node_span - get a cpumask for a node's sched_domain + * @node: node whose cpumask we're constructing + * @span: resulting cpumask + * + * Given a node, construct a good cpumask for its sched_domain to span. It + * should be one that prevents unnecessary balancing, but also spreads tasks + * out optimally. + */ +static void sched_domain_node_span(int node, struct cpumask *span) +{ + nodemask_t used_nodes; + int i; + + cpumask_clear(span); + nodes_clear(used_nodes); + + cpumask_or(span, span, cpumask_of_node(node)); + node_set(node, used_nodes); + + for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { + int next_node = find_next_best_node(node, &used_nodes); + + cpumask_or(span, span, cpumask_of_node(next_node)); + } +} +#endif /* CONFIG_NUMA */ + +int sched_smt_power_savings = 0, sched_mc_power_savings = 0; + +/* + * The cpus mask in sched_group and sched_domain hangs off the end. + * + * ( See the the comments in include/linux/sched.h:struct sched_group + * and struct sched_domain. ) + */ +struct static_sched_group { + struct sched_group sg; + DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); +}; + +struct static_sched_domain { + struct sched_domain sd; + DECLARE_BITMAP(span, CONFIG_NR_CPUS); +}; + +struct s_data { +#ifdef CONFIG_NUMA + int sd_allnodes; + cpumask_var_t domainspan; + cpumask_var_t covered; + cpumask_var_t notcovered; +#endif + cpumask_var_t nodemask; + cpumask_var_t this_sibling_map; + cpumask_var_t this_core_map; + cpumask_var_t send_covered; + cpumask_var_t tmpmask; + struct sched_group **sched_group_nodes; + struct root_domain *rd; +}; + +enum s_alloc { + sa_sched_groups = 0, + sa_rootdomain, + sa_tmpmask, + sa_send_covered, + sa_this_core_map, + sa_this_sibling_map, + sa_nodemask, + sa_sched_group_nodes, +#ifdef CONFIG_NUMA + sa_notcovered, + sa_covered, + sa_domainspan, +#endif + sa_none, +}; + +/* + * SMT sched-domains: + */ +#ifdef CONFIG_SCHED_SMT +static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_groups); + +static int +cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *unused) +{ + if (sg) + *sg = &per_cpu(sched_groups, cpu).sg; + return cpu; +} +#endif /* CONFIG_SCHED_SMT */ + +/* + * multi-core sched-domains: + */ +#ifdef CONFIG_SCHED_MC +static DEFINE_PER_CPU(struct static_sched_domain, core_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); +#endif /* CONFIG_SCHED_MC */ + +#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) +static int +cpu_to_core_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *mask) +{ + int group; + + cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); + group = cpumask_first(mask); + if (sg) + *sg = &per_cpu(sched_group_core, group).sg; + return group; +} +#elif defined(CONFIG_SCHED_MC) +static int +cpu_to_core_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *unused) +{ + if (sg) + *sg = &per_cpu(sched_group_core, cpu).sg; + return cpu; +} +#endif + +static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); + +static int +cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, struct cpumask *mask) +{ + int group; +#ifdef CONFIG_SCHED_MC + cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); + group = cpumask_first(mask); +#elif defined(CONFIG_SCHED_SMT) + cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); + group = cpumask_first(mask); +#else + group = cpu; +#endif + if (sg) + *sg = &per_cpu(sched_group_phys, group).sg; + return group; +} + +/** + * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. + * @group: The group whose first cpu is to be returned. + */ +static inline unsigned int group_first_cpu(struct sched_group *group) +{ + return cpumask_first(sched_group_cpus(group)); +} + +#ifdef CONFIG_NUMA +/* + * The init_sched_build_groups can't handle what we want to do with node + * groups, so roll our own. Now each node has its own list of groups which + * gets dynamically allocated. + */ +static DEFINE_PER_CPU(struct static_sched_domain, node_domains); +static struct sched_group ***sched_group_nodes_bycpu; + +static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); +static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); + +static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, + struct sched_group **sg, + struct cpumask *nodemask) +{ + int group; + + cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); + group = cpumask_first(nodemask); + + if (sg) + *sg = &per_cpu(sched_group_allnodes, group).sg; + return group; +} + +static void init_numa_sched_groups_power(struct sched_group *group_head) +{ + struct sched_group *sg = group_head; + int j; + + if (!sg) + return; + do { + for_each_cpu(j, sched_group_cpus(sg)) { + struct sched_domain *sd; + + sd = &per_cpu(phys_domains, j).sd; + if (j != group_first_cpu(sd->groups)) { + /* + * Only add "power" once for each + * physical package. + */ + continue; + } + + sg->cpu_power += sd->groups->cpu_power; + } + sg = sg->next; + } while (sg != group_head); +} + +static int build_numa_sched_groups(struct s_data *d, + const struct cpumask *cpu_map, int num) +{ + struct sched_domain *sd; + struct sched_group *sg, *prev; + int n, j; + + cpumask_clear(d->covered); + cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); + if (cpumask_empty(d->nodemask)) { + d->sched_group_nodes[num] = NULL; + goto out; + } + + sched_domain_node_span(num, d->domainspan); + cpumask_and(d->domainspan, d->domainspan, cpu_map); + + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, num); + if (!sg) { + printk(KERN_WARNING "Can not alloc domain group for node %d\n", + num); + return -ENOMEM; + } + d->sched_group_nodes[num] = sg; + + for_each_cpu(j, d->nodemask) { + sd = &per_cpu(node_domains, j).sd; + sd->groups = sg; + } + + sg->cpu_power = 0; + cpumask_copy(sched_group_cpus(sg), d->nodemask); + sg->next = sg; + cpumask_or(d->covered, d->covered, d->nodemask); + + prev = sg; + for (j = 0; j < nr_node_ids; j++) { + n = (num + j) % nr_node_ids; + cpumask_complement(d->notcovered, d->covered); + cpumask_and(d->tmpmask, d->notcovered, cpu_map); + cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); + if (cpumask_empty(d->tmpmask)) + break; + cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); + if (cpumask_empty(d->tmpmask)) + continue; + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, num); + if (!sg) { + printk(KERN_WARNING + "Can not alloc domain group for node %d\n", j); + return -ENOMEM; + } + sg->cpu_power = 0; + cpumask_copy(sched_group_cpus(sg), d->tmpmask); + sg->next = prev->next; + cpumask_or(d->covered, d->covered, d->tmpmask); + prev->next = sg; + prev = sg; + } +out: + return 0; +} +#endif /* CONFIG_NUMA */ + +#ifdef CONFIG_NUMA +/* Free memory allocated for various sched_group structures */ +static void free_sched_groups(const struct cpumask *cpu_map, + struct cpumask *nodemask) +{ + int cpu, i; + + for_each_cpu(cpu, cpu_map) { + struct sched_group **sched_group_nodes + = sched_group_nodes_bycpu[cpu]; + + if (!sched_group_nodes) + continue; + + for (i = 0; i < nr_node_ids; i++) { + struct sched_group *oldsg, *sg = sched_group_nodes[i]; + + cpumask_and(nodemask, cpumask_of_node(i), cpu_map); + if (cpumask_empty(nodemask)) + continue; + + if (sg == NULL) + continue; + sg = sg->next; +next_sg: + oldsg = sg; + sg = sg->next; + kfree(oldsg); + if (oldsg != sched_group_nodes[i]) + goto next_sg; + } + kfree(sched_group_nodes); + sched_group_nodes_bycpu[cpu] = NULL; + } +} +#else /* !CONFIG_NUMA */ +static void free_sched_groups(const struct cpumask *cpu_map, + struct cpumask *nodemask) +{ +} +#endif /* CONFIG_NUMA */ + +/* + * Initialise sched groups cpu_power. + * + * cpu_power indicates the capacity of sched group, which is used while + * distributing the load between different sched groups in a sched domain. + * Typically cpu_power for all the groups in a sched domain will be same unless + * there are asymmetries in the topology. If there are asymmetries, group + * having more cpu_power will pickup more load compared to the group having + * less cpu_power. + * + * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents + * the maximum number of tasks a group can handle in the presence of other idle + * or lightly loaded groups in the same sched domain. + */ +static void init_sched_groups_power(int cpu, struct sched_domain *sd) +{ + struct sched_domain *child; + struct sched_group *group; + long power; + int weight; + + WARN_ON(!sd || !sd->groups); + + if (cpu != group_first_cpu(sd->groups)) + return; + + child = sd->child; + + sd->groups->cpu_power = 0; + + if (!child) { + power = SCHED_LOAD_SCALE; + weight = cpumask_weight(sched_domain_span(sd)); + /* + * SMT siblings share the power of a single core. + * Usually multiple threads get a better yield out of + * that one core than a single thread would have, + * reflect that in sd->smt_gain. + */ + if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { + power *= sd->smt_gain; + power /= weight; + power >>= SCHED_LOAD_SHIFT; + } + sd->groups->cpu_power += power; + return; + } + + /* + * Add cpu_power of each child group to this groups cpu_power + */ + group = child->groups; + do { + sd->groups->cpu_power += group->cpu_power; + group = group->next; + } while (group != child->groups); +} + +/* + * Initialisers for schedule domains + * Non-inlined to reduce accumulated stack pressure in build_sched_domains() + */ + +#ifdef CONFIG_SCHED_DEBUG +# define SD_INIT_NAME(sd, type) sd->name = #type +#else +# define SD_INIT_NAME(sd, type) do { } while (0) +#endif + +#define SD_INIT(sd, type) sd_init_##type(sd) + +#define SD_INIT_FUNC(type) \ +static noinline void sd_init_##type(struct sched_domain *sd) \ +{ \ + memset(sd, 0, sizeof(*sd)); \ + *sd = SD_##type##_INIT; \ + sd->level = SD_LV_##type; \ + SD_INIT_NAME(sd, type); \ +} + +SD_INIT_FUNC(CPU) +#ifdef CONFIG_NUMA + SD_INIT_FUNC(ALLNODES) + SD_INIT_FUNC(NODE) +#endif +#ifdef CONFIG_SCHED_SMT + SD_INIT_FUNC(SIBLING) +#endif +#ifdef CONFIG_SCHED_MC + SD_INIT_FUNC(MC) +#endif + +static int default_relax_domain_level = -1; + +static int __init setup_relax_domain_level(char *str) +{ + unsigned long val; + + val = simple_strtoul(str, NULL, 0); + if (val < SD_LV_MAX) + default_relax_domain_level = val; + + return 1; +} +__setup("relax_domain_level=", setup_relax_domain_level); + +static void set_domain_attribute(struct sched_domain *sd, + struct sched_domain_attr *attr) +{ + int request; + + if (!attr || attr->relax_domain_level < 0) { + if (default_relax_domain_level < 0) + return; + else + request = default_relax_domain_level; + } else + request = attr->relax_domain_level; + if (request < sd->level) { + /* turn off idle balance on this domain */ + sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); + } else { + /* turn on idle balance on this domain */ + sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); + } +} + +static void __free_domain_allocs(struct s_data *d, enum s_alloc what, + const struct cpumask *cpu_map) +{ + switch (what) { + case sa_sched_groups: + free_sched_groups(cpu_map, d->tmpmask); /* fall through */ + d->sched_group_nodes = NULL; + case sa_rootdomain: + free_rootdomain(d->rd); /* fall through */ + case sa_tmpmask: + free_cpumask_var(d->tmpmask); /* fall through */ + case sa_send_covered: + free_cpumask_var(d->send_covered); /* fall through */ + case sa_this_core_map: + free_cpumask_var(d->this_core_map); /* fall through */ + case sa_this_sibling_map: + free_cpumask_var(d->this_sibling_map); /* fall through */ + case sa_nodemask: + free_cpumask_var(d->nodemask); /* fall through */ + case sa_sched_group_nodes: +#ifdef CONFIG_NUMA + kfree(d->sched_group_nodes); /* fall through */ + case sa_notcovered: + free_cpumask_var(d->notcovered); /* fall through */ + case sa_covered: + free_cpumask_var(d->covered); /* fall through */ + case sa_domainspan: + free_cpumask_var(d->domainspan); /* fall through */ +#endif + case sa_none: + break; + } +} + +static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, + const struct cpumask *cpu_map) +{ +#ifdef CONFIG_NUMA + if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) + return sa_none; + if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) + return sa_domainspan; + if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) + return sa_covered; + /* Allocate the per-node list of sched groups */ + d->sched_group_nodes = kcalloc(nr_node_ids, + sizeof(struct sched_group *), GFP_KERNEL); + if (!d->sched_group_nodes) { + printk(KERN_WARNING "Can not alloc sched group node list\n"); + return sa_notcovered; + } + sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; +#endif + if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) + return sa_sched_group_nodes; + if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) + return sa_nodemask; + if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) + return sa_this_sibling_map; + if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) + return sa_this_core_map; + if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) + return sa_send_covered; + d->rd = alloc_rootdomain(); + if (!d->rd) { + printk(KERN_WARNING "Cannot alloc root domain\n"); + return sa_tmpmask; + } + return sa_rootdomain; +} + +static struct sched_domain *__build_numa_sched_domains(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) +{ + struct sched_domain *sd = NULL; +#ifdef CONFIG_NUMA + struct sched_domain *parent; + + d->sd_allnodes = 0; + if (cpumask_weight(cpu_map) > + SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { + sd = &per_cpu(allnodes_domains, i).sd; + SD_INIT(sd, ALLNODES); + set_domain_attribute(sd, attr); + cpumask_copy(sched_domain_span(sd), cpu_map); + cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); + d->sd_allnodes = 1; + } + parent = sd; + + sd = &per_cpu(node_domains, i).sd; + SD_INIT(sd, NODE); + set_domain_attribute(sd, attr); + sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); + sd->parent = parent; + if (parent) + parent->child = sd; + cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); +#endif + return sd; +} + +static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd; + sd = &per_cpu(phys_domains, i).sd; + SD_INIT(sd, CPU); + set_domain_attribute(sd, attr); + cpumask_copy(sched_domain_span(sd), d->nodemask); + sd->parent = parent; + if (parent) + parent->child = sd; + cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); + return sd; +} + +static struct sched_domain *__build_mc_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd = parent; +#ifdef CONFIG_SCHED_MC + sd = &per_cpu(core_domains, i).sd; + SD_INIT(sd, MC); + set_domain_attribute(sd, attr); + cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); + sd->parent = parent; + parent->child = sd; + cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); +#endif + return sd; +} + +static struct sched_domain *__build_smt_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd = parent; +#ifdef CONFIG_SCHED_SMT + sd = &per_cpu(cpu_domains, i).sd; + SD_INIT(sd, SIBLING); + set_domain_attribute(sd, attr); + cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); + sd->parent = parent; + parent->child = sd; + cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); +#endif + return sd; +} + +static void build_sched_groups(struct s_data *d, enum sched_domain_level l, + const struct cpumask *cpu_map, int cpu) +{ + switch (l) { +#ifdef CONFIG_SCHED_SMT + case SD_LV_SIBLING: /* set up CPU (sibling) groups */ + cpumask_and(d->this_sibling_map, cpu_map, + topology_thread_cpumask(cpu)); + if (cpu == cpumask_first(d->this_sibling_map)) + init_sched_build_groups(d->this_sibling_map, cpu_map, + &cpu_to_cpu_group, + d->send_covered, d->tmpmask); + break; +#endif +#ifdef CONFIG_SCHED_MC + case SD_LV_MC: /* set up multi-core groups */ + cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); + if (cpu == cpumask_first(d->this_core_map)) + init_sched_build_groups(d->this_core_map, cpu_map, + &cpu_to_core_group, + d->send_covered, d->tmpmask); + break; +#endif + case SD_LV_CPU: /* set up physical groups */ + cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); + if (!cpumask_empty(d->nodemask)) + init_sched_build_groups(d->nodemask, cpu_map, + &cpu_to_phys_group, + d->send_covered, d->tmpmask); + break; +#ifdef CONFIG_NUMA + case SD_LV_ALLNODES: + init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, + d->send_covered, d->tmpmask); + break; +#endif + default: + break; + } +} + +/* + * Build sched domains for a given set of cpus and attach the sched domains + * to the individual cpus + */ +static int __build_sched_domains(const struct cpumask *cpu_map, + struct sched_domain_attr *attr) +{ + enum s_alloc alloc_state = sa_none; + struct s_data d; + struct sched_domain *sd; + int i; +#ifdef CONFIG_NUMA + d.sd_allnodes = 0; +#endif + + alloc_state = __visit_domain_allocation_hell(&d, cpu_map); + if (alloc_state != sa_rootdomain) + goto error; + alloc_state = sa_sched_groups; + + /* + * Set up domains for cpus specified by the cpu_map. + */ + for_each_cpu(i, cpu_map) { + cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), + cpu_map); + + sd = __build_numa_sched_domains(&d, cpu_map, attr, i); + sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); + sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); + sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); + } + + for_each_cpu(i, cpu_map) { + build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); + build_sched_groups(&d, SD_LV_MC, cpu_map, i); + } + + /* Set up physical groups */ + for (i = 0; i < nr_node_ids; i++) + build_sched_groups(&d, SD_LV_CPU, cpu_map, i); + +#ifdef CONFIG_NUMA + /* Set up node groups */ + if (d.sd_allnodes) + build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); + + for (i = 0; i < nr_node_ids; i++) + if (build_numa_sched_groups(&d, cpu_map, i)) + goto error; +#endif + + /* Calculate CPU power for physical packages and nodes */ +#ifdef CONFIG_SCHED_SMT + for_each_cpu(i, cpu_map) { + sd = &per_cpu(cpu_domains, i).sd; + init_sched_groups_power(i, sd); + } +#endif +#ifdef CONFIG_SCHED_MC + for_each_cpu(i, cpu_map) { + sd = &per_cpu(core_domains, i).sd; + init_sched_groups_power(i, sd); + } +#endif + + for_each_cpu(i, cpu_map) { + sd = &per_cpu(phys_domains, i).sd; + init_sched_groups_power(i, sd); + } + +#ifdef CONFIG_NUMA + for (i = 0; i < nr_node_ids; i++) + init_numa_sched_groups_power(d.sched_group_nodes[i]); + + if (d.sd_allnodes) { + struct sched_group *sg; + + cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, + d.tmpmask); + init_numa_sched_groups_power(sg); + } +#endif + + /* Attach the domains */ + for_each_cpu(i, cpu_map) { +#ifdef CONFIG_SCHED_SMT + sd = &per_cpu(cpu_domains, i).sd; +#elif defined(CONFIG_SCHED_MC) + sd = &per_cpu(core_domains, i).sd; +#else + sd = &per_cpu(phys_domains, i).sd; +#endif + cpu_attach_domain(sd, d.rd, i); + } + + d.sched_group_nodes = NULL; /* don't free this we still need it */ + __free_domain_allocs(&d, sa_tmpmask, cpu_map); + return 0; + +error: + __free_domain_allocs(&d, alloc_state, cpu_map); + return -ENOMEM; +} + +static int build_sched_domains(const struct cpumask *cpu_map) +{ + return __build_sched_domains(cpu_map, NULL); +} + +static cpumask_var_t *doms_cur; /* current sched domains */ +static int ndoms_cur; /* number of sched domains in 'doms_cur' */ +static struct sched_domain_attr *dattr_cur; + /* attribues of custom domains in 'doms_cur' */ + +/* + * Special case: If a kmalloc of a doms_cur partition (array of + * cpumask) fails, then fallback to a single sched domain, + * as determined by the single cpumask fallback_doms. + */ +static cpumask_var_t fallback_doms; + +/* + * arch_update_cpu_topology lets virtualised architectures update the + * cpu core maps. It is supposed to return 1 if the topology changed + * or 0 if it stayed the same. + */ +int __attribute__((weak)) arch_update_cpu_topology(void) +{ + return 0; +} + +cpumask_var_t *alloc_sched_domains(unsigned int ndoms) +{ + int i; + cpumask_var_t *doms; + + doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); + if (!doms) + return NULL; + for (i = 0; i < ndoms; i++) { + if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { + free_sched_domains(doms, i); + return NULL; + } + } + return doms; +} + +void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) +{ + unsigned int i; + for (i = 0; i < ndoms; i++) + free_cpumask_var(doms[i]); + kfree(doms); +} + +/* + * Set up scheduler domains and groups. Callers must hold the hotplug lock. + * For now this just excludes isolated cpus, but could be used to + * exclude other special cases in the future. + */ +static int arch_init_sched_domains(const struct cpumask *cpu_map) +{ + int err; + + arch_update_cpu_topology(); + ndoms_cur = 1; + doms_cur = alloc_sched_domains(ndoms_cur); + if (!doms_cur) + doms_cur = &fallback_doms; + cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); + dattr_cur = NULL; + err = build_sched_domains(doms_cur[0]); + register_sched_domain_sysctl(); + + return err; +} + +static void arch_destroy_sched_domains(const struct cpumask *cpu_map, + struct cpumask *tmpmask) +{ + free_sched_groups(cpu_map, tmpmask); +} + +/* + * Detach sched domains from a group of cpus specified in cpu_map + * These cpus will now be attached to the NULL domain + */ +static void detach_destroy_domains(const struct cpumask *cpu_map) +{ + /* Save because hotplug lock held. */ + static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); + int i; + + for_each_cpu(i, cpu_map) + cpu_attach_domain(NULL, &def_root_domain, i); + synchronize_sched(); + arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); +} + +/* handle null as "default" */ +static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, + struct sched_domain_attr *new, int idx_new) +{ + struct sched_domain_attr tmp; + + /* fast path */ + if (!new && !cur) + return 1; + + tmp = SD_ATTR_INIT; + return !memcmp(cur ? (cur + idx_cur) : &tmp, + new ? (new + idx_new) : &tmp, + sizeof(struct sched_domain_attr)); +} + +/* + * Partition sched domains as specified by the 'ndoms_new' + * cpumasks in the array doms_new[] of cpumasks. This compares + * doms_new[] to the current sched domain partitioning, doms_cur[]. + * It destroys each deleted domain and builds each new domain. + * + * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. + * The masks don't intersect (don't overlap.) We should setup one + * sched domain for each mask. CPUs not in any of the cpumasks will + * not be load balanced. If the same cpumask appears both in the + * current 'doms_cur' domains and in the new 'doms_new', we can leave + * it as it is. + * + * The passed in 'doms_new' should be allocated using + * alloc_sched_domains. This routine takes ownership of it and will + * free_sched_domains it when done with it. If the caller failed the + * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, + * and partition_sched_domains() will fallback to the single partition + * 'fallback_doms', it also forces the domains to be rebuilt. + * + * If doms_new == NULL it will be replaced with cpu_online_mask. + * ndoms_new == 0 is a special case for destroying existing domains, + * and it will not create the default domain. + * + * Call with hotplug lock held + */ +void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], + struct sched_domain_attr *dattr_new) +{ + int i, j, n; + int new_topology; + + mutex_lock(&sched_domains_mutex); + + /* always unregister in case we don't destroy any domains */ + unregister_sched_domain_sysctl(); + + /* Let architecture update cpu core mappings. */ + new_topology = arch_update_cpu_topology(); + + n = doms_new ? ndoms_new : 0; + + /* Destroy deleted domains */ + for (i = 0; i < ndoms_cur; i++) { + for (j = 0; j < n && !new_topology; j++) { + if (cpumask_equal(doms_cur[i], doms_new[j]) + && dattrs_equal(dattr_cur, i, dattr_new, j)) + goto match1; + } + /* no match - a current sched domain not in new doms_new[] */ + detach_destroy_domains(doms_cur[i]); +match1: + ; + } + + if (doms_new == NULL) { + ndoms_cur = 0; + doms_new = &fallback_doms; + cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); + WARN_ON_ONCE(dattr_new); + } + + /* Build new domains */ + for (i = 0; i < ndoms_new; i++) { + for (j = 0; j < ndoms_cur && !new_topology; j++) { + if (cpumask_equal(doms_new[i], doms_cur[j]) + && dattrs_equal(dattr_new, i, dattr_cur, j)) + goto match2; + } + /* no match - add a new doms_new */ + __build_sched_domains(doms_new[i], + dattr_new ? dattr_new + i : NULL); +match2: + ; + } + + /* Remember the new sched domains */ + if (doms_cur != &fallback_doms) + free_sched_domains(doms_cur, ndoms_cur); + kfree(dattr_cur); /* kfree(NULL) is safe */ + doms_cur = doms_new; + dattr_cur = dattr_new; + ndoms_cur = ndoms_new; + + register_sched_domain_sysctl(); + + mutex_unlock(&sched_domains_mutex); +} + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +static void arch_reinit_sched_domains(void) +{ + get_online_cpus(); + + /* Destroy domains first to force the rebuild */ + partition_sched_domains(0, NULL, NULL); + + rebuild_sched_domains(); + put_online_cpus(); +} + +static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) +{ + unsigned int level = 0; + + if (sscanf(buf, "%u", &level) != 1) + return -EINVAL; + + /* + * level is always be positive so don't check for + * level < POWERSAVINGS_BALANCE_NONE which is 0 + * What happens on 0 or 1 byte write, + * need to check for count as well? + */ + + if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) + return -EINVAL; + + if (smt) + sched_smt_power_savings = level; + else + sched_mc_power_savings = level; + + arch_reinit_sched_domains(); + + return count; +} + +#ifdef CONFIG_SCHED_MC +static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, + struct sysdev_class_attribute *attr, + char *page) +{ + return sprintf(page, "%u\n", sched_mc_power_savings); +} +static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, + struct sysdev_class_attribute *attr, + const char *buf, size_t count) +{ + return sched_power_savings_store(buf, count, 0); +} +static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, + sched_mc_power_savings_show, + sched_mc_power_savings_store); +#endif + +#ifdef CONFIG_SCHED_SMT +static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, + struct sysdev_class_attribute *attr, + char *page) +{ + return sprintf(page, "%u\n", sched_smt_power_savings); +} +static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, + struct sysdev_class_attribute *attr, + const char *buf, size_t count) +{ + return sched_power_savings_store(buf, count, 1); +} +static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, + sched_smt_power_savings_show, + sched_smt_power_savings_store); +#endif + +int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) +{ + int err = 0; + +#ifdef CONFIG_SCHED_SMT + if (smt_capable()) + err = sysfs_create_file(&cls->kset.kobj, + &attr_sched_smt_power_savings.attr); +#endif +#ifdef CONFIG_SCHED_MC + if (!err && mc_capable()) + err = sysfs_create_file(&cls->kset.kobj, + &attr_sched_mc_power_savings.attr); +#endif + return err; +} +#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ + +#ifndef CONFIG_CPUSETS +/* + * Add online and remove offline CPUs from the scheduler domains. + * When cpusets are enabled they take over this function. + */ +static int update_sched_domains(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + switch (action) { + case CPU_ONLINE: + case CPU_ONLINE_FROZEN: + case CPU_DOWN_PREPARE: + case CPU_DOWN_PREPARE_FROZEN: + case CPU_DOWN_FAILED: + case CPU_DOWN_FAILED_FROZEN: + partition_sched_domains(1, NULL, NULL); + return NOTIFY_OK; + + default: + return NOTIFY_DONE; + } +} +#endif + +static int update_runtime(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + switch (action) { + case CPU_DOWN_PREPARE: + case CPU_DOWN_PREPARE_FROZEN: + return NOTIFY_OK; + + case CPU_DOWN_FAILED: + case CPU_DOWN_FAILED_FROZEN: + case CPU_ONLINE: + case CPU_ONLINE_FROZEN: + return NOTIFY_OK; + + default: + return NOTIFY_DONE; + } +} + +#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) +/* + * Cheaper version of the below functions in case support for SMT and MC is + * compiled in but CPUs have no siblings. + */ +static int sole_cpu_idle(unsigned long cpu) +{ + return rq_idle(cpu_rq(cpu)); +} +#endif +#ifdef CONFIG_SCHED_SMT +/* All this CPU's SMT siblings are idle */ +static int siblings_cpu_idle(unsigned long cpu) +{ + return cpumask_subset(&(cpu_rq(cpu)->smt_siblings), + &grq.cpu_idle_map); +} +#endif +#ifdef CONFIG_SCHED_MC +/* All this CPU's shared cache siblings are idle */ +static int cache_cpu_idle(unsigned long cpu) +{ + return cpumask_subset(&(cpu_rq(cpu)->cache_siblings), + &grq.cpu_idle_map); +} +#endif + +void __init sched_init_smp(void) +{ + struct sched_domain *sd; + int cpu, cpus; + + cpumask_var_t non_isolated_cpus; + + alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); + alloc_cpumask_var(&fallback_doms, GFP_KERNEL); + +#if defined(CONFIG_NUMA) + sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), + GFP_KERNEL); + BUG_ON(sched_group_nodes_bycpu == NULL); +#endif + get_online_cpus(); + mutex_lock(&sched_domains_mutex); + arch_init_sched_domains(cpu_active_mask); + cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); + if (cpumask_empty(non_isolated_cpus)) + cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); + mutex_unlock(&sched_domains_mutex); + put_online_cpus(); + +#ifndef CONFIG_CPUSETS + /* XXX: Theoretical race here - CPU may be hotplugged now */ + hotcpu_notifier(update_sched_domains, 0); +#endif + + /* RT runtime code needs to handle some hotplug events */ + hotcpu_notifier(update_runtime, 0); + + /* Move init over to a non-isolated CPU */ + if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) + BUG(); + free_cpumask_var(non_isolated_cpus); + + /* + * Assume that every added cpu gives us slightly less overall latency + * allowing us to increase the base rr_interval, non-linearly and with + * an upper bound. + */ + cpus = num_online_cpus(); + rr_interval = rr_interval * (4 * cpus + 4) / (cpus + 6); + + grq_lock_irq(); + /* + * Set up the relative cache distance of each online cpu from each + * other in a simple array for quick lookup. Locality is determined + * by the closest sched_domain that CPUs are separated by. CPUs with + * shared cache in SMT and MC are treated as local. Separate CPUs + * (within the same package or physically) within the same node are + * treated as not local. CPUs not even in the same domain (different + * nodes) are treated as very distant. + */ + for_each_online_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + for_each_domain(cpu, sd) { + unsigned long locality; + int other_cpu; + +#ifdef CONFIG_SCHED_SMT + if (sd->level == SD_LV_SIBLING) { + for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) + cpumask_set_cpu(other_cpu, &rq->smt_siblings); + } +#endif +#ifdef CONFIG_SCHED_MC + if (sd->level == SD_LV_MC) { + for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) + cpumask_set_cpu(other_cpu, &rq->cache_siblings); + } +#endif + if (sd->level <= SD_LV_MC) + locality = 0; + else if (sd->level <= SD_LV_NODE) + locality = 1; + else + continue; + + for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) { + if (locality < rq->cpu_locality[other_cpu]) + rq->cpu_locality[other_cpu] = locality; + } + } + +/* + * Each runqueue has its own function in case it doesn't have + * siblings of its own allowing mixed topologies. + */ +#ifdef CONFIG_SCHED_SMT + if (cpus_weight(rq->smt_siblings) > 1) + rq->siblings_idle = siblings_cpu_idle; +#endif +#ifdef CONFIG_SCHED_MC + if (cpus_weight(rq->cache_siblings) > 1) + rq->cache_idle = cache_cpu_idle; +#endif + } + grq_unlock_irq(); +} +#else +void __init sched_init_smp(void) +{ +} +#endif /* CONFIG_SMP */ + +unsigned int sysctl_timer_migration = 1; + +int in_sched_functions(unsigned long addr) +{ + return in_lock_functions(addr) || + (addr >= (unsigned long)__sched_text_start + && addr < (unsigned long)__sched_text_end); +} + +void __init sched_init(void) +{ + int i; + struct rq *rq; + + prio_ratios[0] = 100; + for (i = 1 ; i < PRIO_RANGE ; i++) + prio_ratios[i] = prio_ratios[i - 1] * 11 / 10; + + raw_spin_lock_init(&grq.lock); + grq.nr_running = grq.nr_uninterruptible = grq.nr_switches = 0; + grq.iso_ticks = grq.iso_refractory = 0; +#ifdef CONFIG_SMP + init_defrootdomain(); + grq.qnr = grq.idle_cpus = 0; + cpumask_clear(&grq.cpu_idle_map); +#else + uprq = &per_cpu(runqueues, 0); +#endif + for_each_possible_cpu(i) { + rq = cpu_rq(i); + rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc = + rq->iowait_pc = rq->idle_pc = 0; +#ifdef CONFIG_SMP + rq->sd = NULL; + rq->rd = NULL; + rq->online = 0; + rq->cpu = i; + rq_attach_root(rq, &def_root_domain); +#endif + atomic_set(&rq->nr_iowait, 0); + } + +#ifdef CONFIG_SMP + nr_cpu_ids = i; + /* + * Set the base locality for cpu cache distance calculation to + * "distant" (3). Make sure the distance from a CPU to itself is 0. + */ + for_each_possible_cpu(i) { + int j; + + rq = cpu_rq(i); +#ifdef CONFIG_SCHED_SMT + cpumask_clear(&rq->smt_siblings); + cpumask_set_cpu(i, &rq->smt_siblings); + rq->siblings_idle = sole_cpu_idle; + cpumask_set_cpu(i, &rq->smt_siblings); +#endif +#ifdef CONFIG_SCHED_MC + cpumask_clear(&rq->cache_siblings); + cpumask_set_cpu(i, &rq->cache_siblings); + rq->cache_idle = sole_cpu_idle; + cpumask_set_cpu(i, &rq->cache_siblings); +#endif + rq->cpu_locality = kmalloc(nr_cpu_ids * sizeof(unsigned long), + GFP_NOWAIT); + for_each_possible_cpu(j) { + if (i == j) + rq->cpu_locality[j] = 0; + else + rq->cpu_locality[j] = 3; + } + } +#endif + + for (i = 0; i < PRIO_LIMIT; i++) + INIT_LIST_HEAD(grq.queue + i); + /* delimiter for bitsearch */ + __set_bit(PRIO_LIMIT, grq.prio_bitmap); + +#ifdef CONFIG_PREEMPT_NOTIFIERS + INIT_HLIST_HEAD(&init_task.preempt_notifiers); +#endif + +#ifdef CONFIG_RT_MUTEXES + plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); +#endif + + /* + * The boot idle thread does lazy MMU switching as well: + */ + atomic_inc(&init_mm.mm_count); + enter_lazy_tlb(&init_mm, current); + + /* + * Make us the idle thread. Technically, schedule() should not be + * called from this thread, however somewhere below it might be, + * but because we are the idle thread, we just pick up running again + * when this runqueue becomes "idle". + */ + init_idle(current, smp_processor_id()); + + /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ + zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); +#ifdef CONFIG_SMP +#ifdef CONFIG_NO_HZ + zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); + alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); +#endif + /* May be allocated at isolcpus cmdline parse time */ + if (cpu_isolated_map == NULL) + zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); +#endif /* SMP */ + perf_event_init(); +} + +#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP +static inline int preempt_count_equals(int preempt_offset) +{ + int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); + + return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); +} + +void __might_sleep(const char *file, int line, int preempt_offset) +{ +#ifdef in_atomic + static unsigned long prev_jiffy; /* ratelimiting */ + + if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || + system_state != SYSTEM_RUNNING || oops_in_progress) + return; + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) + return; + prev_jiffy = jiffies; + + printk(KERN_ERR + "BUG: sleeping function called from invalid context at %s:%d\n", + file, line); + printk(KERN_ERR + "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", + in_atomic(), irqs_disabled(), + current->pid, current->comm); + + debug_show_held_locks(current); + if (irqs_disabled()) + print_irqtrace_events(current); + dump_stack(); +#endif +} +EXPORT_SYMBOL(__might_sleep); +#endif + +#ifdef CONFIG_MAGIC_SYSRQ +void normalize_rt_tasks(void) +{ + struct task_struct *g, *p; + unsigned long flags; + struct rq *rq; + int queued; + + read_lock_irq(&tasklist_lock); + + do_each_thread(g, p) { + if (!rt_task(p) && !iso_task(p)) + continue; + + raw_spin_lock_irqsave(&p->pi_lock, flags); + rq = __task_grq_lock(p); + + queued = task_queued(p); + if (queued) + dequeue_task(p); + __setscheduler(p, rq, SCHED_NORMAL, 0); + if (queued) { + enqueue_task(p); + try_preempt(p, rq); + } + + __task_grq_unlock(); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + } while_each_thread(g, p); + + read_unlock_irq(&tasklist_lock); +} +#endif /* CONFIG_MAGIC_SYSRQ */ + +#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) +/* + * These functions are only useful for the IA64 MCA handling, or kdb. + * + * They can only be called when the whole system has been + * stopped - every CPU needs to be quiescent, and no scheduling + * activity can take place. Using them for anything else would + * be a serious bug, and as a result, they aren't even visible + * under any other configuration. + */ + +/** + * curr_task - return the current task for a given cpu. + * @cpu: the processor in question. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + */ +struct task_struct *curr_task(int cpu) +{ + return cpu_curr(cpu); +} + +#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ + +#ifdef CONFIG_IA64 +/** + * set_curr_task - set the current task for a given cpu. + * @cpu: the processor in question. + * @p: the task pointer to set. + * + * Description: This function must only be used when non-maskable interrupts + * are serviced on a separate stack. It allows the architecture to switch the + * notion of the current task on a cpu in a non-blocking manner. This function + * must be called with all CPU's synchronised, and interrupts disabled, the + * and caller must save the original value of the current task (see + * curr_task() above) and restore that value before reenabling interrupts and + * re-starting the system. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + */ +void set_curr_task(int cpu, struct task_struct *p) +{ + cpu_curr(cpu) = p; +} + +#endif + +/* + * Use precise platform statistics if available: + */ +#ifdef CONFIG_VIRT_CPU_ACCOUNTING +void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + *ut = p->utime; + *st = p->stime; +} + +void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + struct task_cputime cputime; + + thread_group_cputime(p, &cputime); + + *ut = cputime.utime; + *st = cputime.stime; +} +#else + +#ifndef nsecs_to_cputime +# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) +#endif + +void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); + + rtime = nsecs_to_cputime(p->sched_time); + + if (total) { + u64 temp; + + temp = (u64)(rtime * utime); + do_div(temp, total); + utime = (cputime_t)temp; + } else + utime = rtime; + + /* + * Compare with previous values, to keep monotonicity: + */ + p->prev_utime = max(p->prev_utime, utime); + p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); + + *ut = p->prev_utime; + *st = p->prev_stime; +} + +/* + * Must be called with siglock held. + */ +void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + struct signal_struct *sig = p->signal; + struct task_cputime cputime; + cputime_t rtime, utime, total; + + thread_group_cputime(p, &cputime); + + total = cputime_add(cputime.utime, cputime.stime); + rtime = nsecs_to_cputime(cputime.sum_exec_runtime); + + if (total) { + u64 temp; + + temp = (u64)(rtime * cputime.utime); + do_div(temp, total); + utime = (cputime_t)temp; + } else + utime = rtime; + + sig->prev_utime = max(sig->prev_utime, utime); + sig->prev_stime = max(sig->prev_stime, + cputime_sub(rtime, sig->prev_utime)); + + *ut = sig->prev_utime; + *st = sig->prev_stime; +} +#endif + +inline cputime_t task_gtime(struct task_struct *p) +{ + return p->gtime; +} + +void __cpuinit init_idle_bootup_task(struct task_struct *idle) +{} + +#ifdef CONFIG_SCHED_DEBUG +void proc_sched_show_task(struct task_struct *p, struct seq_file *m) +{} + +void proc_sched_set_task(struct task_struct *p) +{} +#endif + +/* No RCU torture test support */ +void synchronize_sched_expedited(void) +{ + barrier(); +} +EXPORT_SYMBOL_GPL(synchronize_sched_expedited); + +#ifdef CONFIG_SMP +unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return SCHED_LOAD_SCALE; +} + +unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long smt_gain = sd->smt_gain; + + smt_gain /= weight; + + return smt_gain; +} +#endif Index: linux-2.6.35-bfs/kernel/posix-cpu-timers.c =================================================================== --- linux-2.6.35-bfs.orig/kernel/posix-cpu-timers.c 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/kernel/posix-cpu-timers.c 2010-08-13 08:39:05.075928688 +1000 @@ -249,7 +249,7 @@ void thread_group_cputime(struct task_st do { times->utime = cputime_add(times->utime, t->utime); times->stime = cputime_add(times->stime, t->stime); - times->sum_exec_runtime += t->se.sum_exec_runtime; + times->sum_exec_runtime += tsk_seruntime(t); t = next_thread(t); } while (t != tsk); @@ -515,7 +515,7 @@ static void cleanup_timers(struct list_h void posix_cpu_timers_exit(struct task_struct *tsk) { cleanup_timers(tsk->cpu_timers, - tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); + tsk->utime, tsk->stime, tsk_seruntime(tsk)); } void posix_cpu_timers_exit_group(struct task_struct *tsk) @@ -525,7 +525,7 @@ void posix_cpu_timers_exit_group(struct cleanup_timers(tsk->signal->cpu_timers, cputime_add(tsk->utime, sig->utime), cputime_add(tsk->stime, sig->stime), - tsk->se.sum_exec_runtime + sig->sum_sched_runtime); + tsk_seruntime(tsk) + sig->sum_sched_runtime); } static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) @@ -956,7 +956,7 @@ static void check_thread_timers(struct t struct cpu_timer_list *t = list_first_entry(timers, struct cpu_timer_list, entry); - if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { + if (!--maxfire || tsk_seruntime(tsk) < t->expires.sched) { tsk->cputime_expires.sched_exp = t->expires.sched; break; } @@ -973,7 +973,7 @@ static void check_thread_timers(struct t ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); if (hard != RLIM_INFINITY && - tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { + tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { /* * At the hard limit, we just die. * No need to calculate anything else now. @@ -981,7 +981,7 @@ static void check_thread_timers(struct t __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } - if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { + if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { /* * At the soft limit, send a SIGXCPU every second. */ @@ -1287,7 +1287,7 @@ static inline int fastpath_timer_check(s struct task_cputime task_sample = { .utime = tsk->utime, .stime = tsk->stime, - .sum_exec_runtime = tsk->se.sum_exec_runtime + .sum_exec_runtime = tsk_seruntime(tsk) }; if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) Index: linux-2.6.35-bfs/kernel/exit.c =================================================================== --- linux-2.6.35-bfs.orig/kernel/exit.c 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/kernel/exit.c 2010-08-13 08:39:05.076928538 +1000 @@ -123,7 +123,7 @@ static void __exit_signal(struct task_st sig->inblock += task_io_get_inblock(tsk); sig->oublock += task_io_get_oublock(tsk); task_io_accounting_add(&sig->ioac, &tsk->ioac); - sig->sum_sched_runtime += tsk->se.sum_exec_runtime; + sig->sum_sched_runtime += tsk_seruntime(tsk); } sig->nr_threads--; Index: linux-2.6.35-bfs/mm/oom_kill.c =================================================================== --- linux-2.6.35-bfs.orig/mm/oom_kill.c 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/mm/oom_kill.c 2010-08-13 08:39:05.076928538 +1000 @@ -411,7 +411,7 @@ static void __oom_kill_task(struct task_ * all the memory it needs. That way it should be able to * exit() and clear out its resources quickly... */ - p->rt.time_slice = HZ; + set_oom_timeslice(p); set_tsk_thread_flag(p, TIF_MEMDIE); force_sig(SIGKILL, p); Index: linux-2.6.35-bfs/init/Kconfig =================================================================== --- linux-2.6.35-bfs.orig/init/Kconfig 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/init/Kconfig 2010-08-13 08:39:05.076928538 +1000 @@ -23,6 +23,19 @@ config CONSTRUCTORS menu "General setup" +config SCHED_BFS + bool "BFS cpu scheduler" + ---help--- + The Brain Fuck CPU Scheduler for excellent interactivity and + responsiveness on the desktop and solid scalability on normal + hardware. Not recommended for 4096 CPUs. + + Currently incompatible with the Group CPU scheduler, and RCU TORTURE + TEST so these options are disabled. + + Say Y here. + default y + config EXPERIMENTAL bool "Prompt for development and/or incomplete code/drivers" ---help--- @@ -537,7 +550,7 @@ config PROC_PID_CPUSET config CGROUP_CPUACCT bool "Simple CPU accounting cgroup subsystem" - depends on CGROUPS + depends on CGROUPS && !SCHED_BFS help Provides a simple Resource Controller for monitoring the total CPU consumed by the tasks in a cgroup. @@ -592,7 +605,7 @@ config CGROUP_MEM_RES_CTLR_SWAP menuconfig CGROUP_SCHED bool "Group CPU scheduler" - depends on EXPERIMENTAL && CGROUPS + depends on EXPERIMENTAL && CGROUPS && !SCHED_BFS default n help This feature lets CPU scheduler recognize task groups and control CPU Index: linux-2.6.35-bfs/kernel/delayacct.c =================================================================== --- linux-2.6.35-bfs.orig/kernel/delayacct.c 2009-12-03 21:40:09.000000000 +1100 +++ linux-2.6.35-bfs/kernel/delayacct.c 2010-08-13 08:39:05.076928538 +1000 @@ -128,7 +128,7 @@ int __delayacct_add_tsk(struct taskstats */ t1 = tsk->sched_info.pcount; t2 = tsk->sched_info.run_delay; - t3 = tsk->se.sum_exec_runtime; + t3 = tsk_seruntime(tsk); d->cpu_count += t1; Index: linux-2.6.35-bfs/fs/proc/base.c =================================================================== --- linux-2.6.35-bfs.orig/fs/proc/base.c 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/fs/proc/base.c 2010-08-13 08:39:05.077928388 +1000 @@ -355,7 +355,7 @@ static int proc_pid_stack(struct seq_fil static int proc_pid_schedstat(struct task_struct *task, char *buffer) { return sprintf(buffer, "%llu %llu %lu\n", - (unsigned long long)task->se.sum_exec_runtime, + (unsigned long long)tsk_seruntime(task), (unsigned long long)task->sched_info.run_delay, task->sched_info.pcount); } Index: linux-2.6.35-bfs/init/main.c =================================================================== --- linux-2.6.35-bfs.orig/init/main.c 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/init/main.c 2010-08-13 08:39:05.077928388 +1000 @@ -834,6 +834,7 @@ static noinline int init_post(void) system_state = SYSTEM_RUNNING; numa_default_policy(); + print_scheduler_version(); current->signal->flags |= SIGNAL_UNKILLABLE; Index: linux-2.6.35-bfs/Documentation/scheduler/sched-BFS.txt =================================================================== --- /dev/null 1970-01-01 00:00:00.000000000 +0000 +++ linux-2.6.35-bfs/Documentation/scheduler/sched-BFS.txt 2010-08-29 09:24:24.691454548 +1000 @@ -0,0 +1,351 @@ +BFS - The Brain Fuck Scheduler by Con Kolivas. + +Goals. + +The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to +completely do away with the complex designs of the past for the cpu process +scheduler and instead implement one that is very simple in basic design. +The main focus of BFS is to achieve excellent desktop interactivity and +responsiveness without heuristics and tuning knobs that are difficult to +understand, impossible to model and predict the effect of, and when tuned to +one workload cause massive detriment to another. + + +Design summary. + +BFS is best described as a single runqueue, O(n) lookup, earliest effective +virtual deadline first design, loosely based on EEVDF (earliest eligible virtual +deadline first) and my previous Staircase Deadline scheduler. Each component +shall be described in order to understand the significance of, and reasoning for +it. The codebase when the first stable version was released was approximately +9000 lines less code than the existing mainline linux kernel scheduler (in +2.6.31). This does not even take into account the removal of documentation and +the cgroups code that is not used. + +Design reasoning. + +The single runqueue refers to the queued but not running processes for the +entire system, regardless of the number of CPUs. The reason for going back to +a single runqueue design is that once multiple runqueues are introduced, +per-CPU or otherwise, there will be complex interactions as each runqueue will +be responsible for the scheduling latency and fairness of the tasks only on its +own runqueue, and to achieve fairness and low latency across multiple CPUs, any +advantage in throughput of having CPU local tasks causes other disadvantages. +This is due to requiring a very complex balancing system to at best achieve some +semblance of fairness across CPUs and can only maintain relatively low latency +for tasks bound to the same CPUs, not across them. To increase said fairness +and latency across CPUs, the advantage of local runqueue locking, which makes +for better scalability, is lost due to having to grab multiple locks. + +A significant feature of BFS is that all accounting is done purely based on CPU +used and nowhere is sleep time used in any way to determine entitlement or +interactivity. Interactivity "estimators" that use some kind of sleep/run +algorithm are doomed to fail to detect all interactive tasks, and to falsely tag +tasks that aren't interactive as being so. The reason for this is that it is +close to impossible to determine that when a task is sleeping, whether it is +doing it voluntarily, as in a userspace application waiting for input in the +form of a mouse click or otherwise, or involuntarily, because it is waiting for +another thread, process, I/O, kernel activity or whatever. Thus, such an +estimator will introduce corner cases, and more heuristics will be required to +cope with those corner cases, introducing more corner cases and failed +interactivity detection and so on. Interactivity in BFS is built into the design +by virtue of the fact that tasks that are waking up have not used up their quota +of CPU time, and have earlier effective deadlines, thereby making it very likely +they will preempt any CPU bound task of equivalent nice level. See below for +more information on the virtual deadline mechanism. Even if they do not preempt +a running task, because the rr interval is guaranteed to have a bound upper +limit on how long a task will wait for, it will be scheduled within a timeframe +that will not cause visible interface jitter. + + +Design details. + +Task insertion. + +BFS inserts tasks into each relevant queue as an O(1) insertion into a double +linked list. On insertion, *every* running queue is checked to see if the newly +queued task can run on any idle queue, or preempt the lowest running task on the +system. This is how the cross-CPU scheduling of BFS achieves significantly lower +latency per extra CPU the system has. In this case the lookup is, in the worst +case scenario, O(n) where n is the number of CPUs on the system. + +Data protection. + +BFS has one single lock protecting the process local data of every task in the +global queue. Thus every insertion, removal and modification of task data in the +global runqueue needs to grab the global lock. However, once a task is taken by +a CPU, the CPU has its own local data copy of the running process' accounting +information which only that CPU accesses and modifies (such as during a +timer tick) thus allowing the accounting data to be updated lockless. Once a +CPU has taken a task to run, it removes it from the global queue. Thus the +global queue only ever has, at most, + + (number of tasks requesting cpu time) - (number of logical CPUs) + 1 + +tasks in the global queue. This value is relevant for the time taken to look up +tasks during scheduling. This will increase if many tasks with CPU affinity set +in their policy to limit which CPUs they're allowed to run on if they outnumber +the number of CPUs. The +1 is because when rescheduling a task, the CPU's +currently running task is put back on the queue. Lookup will be described after +the virtual deadline mechanism is explained. + +Virtual deadline. + +The key to achieving low latency, scheduling fairness, and "nice level" +distribution in BFS is entirely in the virtual deadline mechanism. The one +tunable in BFS is the rr_interval, or "round robin interval". This is the +maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy) +tasks of the same nice level will be running for, or looking at it the other +way around, the longest duration two tasks of the same nice level will be +delayed for. When a task requests cpu time, it is given a quota (time_slice) +equal to the rr_interval and a virtual deadline. The virtual deadline is +offset from the current time in jiffies by this equation: + + jiffies + (prio_ratio * rr_interval) + +The prio_ratio is determined as a ratio compared to the baseline of nice -20 +and increases by 10% per nice level. The deadline is a virtual one only in that +no guarantee is placed that a task will actually be scheduled by this time, but +it is used to compare which task should go next. There are three components to +how a task is next chosen. First is time_slice expiration. If a task runs out +of its time_slice, it is descheduled, the time_slice is refilled, and the +deadline reset to that formula above. Second is sleep, where a task no longer +is requesting CPU for whatever reason. The time_slice and deadline are _not_ +adjusted in this case and are just carried over for when the task is next +scheduled. Third is preemption, and that is when a newly waking task is deemed +higher priority than a currently running task on any cpu by virtue of the fact +that it has an earlier virtual deadline than the currently running task. The +earlier deadline is the key to which task is next chosen for the first and +second cases. Once a task is descheduled, it is put back on the queue, and an +O(n) lookup of all queued-but-not-running tasks is done to determine which has +the earliest deadline and that task is chosen to receive CPU next. + +The CPU proportion of different nice tasks works out to be approximately the + + (prio_ratio difference)^2 + +The reason it is squared is that a task's deadline does not change while it is +running unless it runs out of time_slice. Thus, even if the time actually +passes the deadline of another task that is queued, it will not get CPU time +unless the current running task deschedules, and the time "base" (jiffies) is +constantly moving. + +Task lookup. + +BFS has 103 priority queues. 100 of these are dedicated to the static priority +of realtime tasks, and the remaining 3 are, in order of best to worst priority, +SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority +scheduling). When a task of these priorities is queued, a bitmap of running +priorities is set showing which of these priorities has tasks waiting for CPU +time. When a CPU is made to reschedule, the lookup for the next task to get +CPU time is performed in the following way: + +First the bitmap is checked to see what static priority tasks are queued. If +any realtime priorities are found, the corresponding queue is checked and the +first task listed there is taken (provided CPU affinity is suitable) and lookup +is complete. If the priority corresponds to a SCHED_ISO task, they are also +taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds +to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this +stage, every task in the runlist that corresponds to that priority is checked +to see which has the earliest set deadline, and (provided it has suitable CPU +affinity) it is taken off the runqueue and given the CPU. If a task has an +expired deadline, it is taken and the rest of the lookup aborted (as they are +chosen in FIFO order). + +Thus, the lookup is O(n) in the worst case only, where n is as described +earlier, as tasks may be chosen before the whole task list is looked over. + + +Scalability. + +The major limitations of BFS will be that of scalability, as the separate +runqueue designs will have less lock contention as the number of CPUs rises. +However they do not scale linearly even with separate runqueues as multiple +runqueues will need to be locked concurrently on such designs to be able to +achieve fair CPU balancing, to try and achieve some sort of nice-level fairness +across CPUs, and to achieve low enough latency for tasks on a busy CPU when +other CPUs would be more suited. BFS has the advantage that it requires no +balancing algorithm whatsoever, as balancing occurs by proxy simply because +all CPUs draw off the global runqueue, in priority and deadline order. Despite +the fact that scalability is _not_ the prime concern of BFS, it both shows very +good scalability to smaller numbers of CPUs and is likely a more scalable design +at these numbers of CPUs. + +It also has some very low overhead scalability features built into the design +when it has been deemed their overhead is so marginal that they're worth adding. +The first is the local copy of the running process' data to the CPU it's running +on to allow that data to be updated lockless where possible. Then there is +deference paid to the last CPU a task was running on, by trying that CPU first +when looking for an idle CPU to use the next time it's scheduled. Finally there +is the notion of cache locality beyond the last running CPU. The sched_domains +information is used to determine the relative virtual "cache distance" that +other CPUs have from the last CPU a task was running on. CPUs with shared +caches, such as SMT siblings, or multicore CPUs with shared caches, are treated +as cache local. CPUs without shared caches are treated as not cache local, and +CPUs on different NUMA nodes are treated as very distant. This "relative cache +distance" is used by modifying the virtual deadline value when doing lookups. +Effectively, the deadline is unaltered between "cache local" CPUs, doubled for +"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning +behind the doubling of deadlines is as follows. The real cost of migrating a +task from one CPU to another is entirely dependant on the cache footprint of +the task, how cache intensive the task is, how long it's been running on that +CPU to take up the bulk of its cache, how big the CPU cache is, how fast and +how layered the CPU cache is, how fast a context switch is... and so on. In +other words, it's close to random in the real world where we do more than just +one sole workload. The only thing we can be sure of is that it's not free. So +BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs +is more important than cache locality, and cache locality only plays a part +after that. Doubling the effective deadline is based on the premise that the +"cache local" CPUs will tend to work on the same tasks up to double the number +of cache local CPUs, and once the workload is beyond that amount, it is likely +that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA +is a value I pulled out of my arse. + +When choosing an idle CPU for a waking task, the cache locality is determined +according to where the task last ran and then idle CPUs are ranked from best +to worst to choose the most suitable idle CPU based on cache locality, NUMA +node locality and hyperthread sibling business. They are chosen in the +following preference (if idle): + +* Same core, idle or busy cache, idle threads +* Other core, same cache, idle or busy cache, idle threads. +* Same node, other CPU, idle cache, idle threads. +* Same node, other CPU, busy cache, idle threads. +* Same core, busy threads. +* Other core, same cache, busy threads. +* Same node, other CPU, busy threads. +* Other node, other CPU, idle cache, idle threads. +* Other node, other CPU, busy cache, idle threads. +* Other node, other CPU, busy threads. + +This shows the SMT or "hyperthread" awareness in the design as well which will +choose a real idle core first before a logical SMT sibling which already has +tasks on the physical CPU. + +Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark. +However this benchmarking was performed on an earlier design that was far less +scalable than the current one so it's hard to know how scalable it is in terms +of both CPUs (due to the global runqueue) and heavily loaded machines (due to +O(n) lookup) at this stage. Note that in terms of scalability, the number of +_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x) +quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark +results are very promising indeed, without needing to tweak any knobs, features +or options. Benchmark contributions are most welcome. + + +Features + +As the initial prime target audience for BFS was the average desktop user, it +was designed to not need tweaking, tuning or have features set to obtain benefit +from it. Thus the number of knobs and features has been kept to an absolute +minimum and should not require extra user input for the vast majority of cases. +There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval +and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition +to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is +support for CGROUPS. The average user should neither need to know what these +are, nor should they need to be using them to have good desktop behaviour. + +rr_interval + +There is only one "scheduler" tunable, the round robin interval. This can be +accessed in + + /proc/sys/kernel/rr_interval + +The value is in milliseconds, and the default value is set to 6 on a +uniprocessor machine, and automatically set to a progressively higher value on +multiprocessor machines. The reasoning behind increasing the value on more CPUs +is that the effective latency is decreased by virtue of there being more CPUs on +BFS (for reasons explained above), and increasing the value allows for less +cache contention and more throughput. Valid values are from 1 to 5000 +Decreasing the value will decrease latencies at the cost of decreasing +throughput, while increasing it will improve throughput, but at the cost of +worsening latencies. The accuracy of the rr interval is limited by HZ resolution +of the kernel configuration. Thus, the worst case latencies are usually slightly +higher than this actual value. The default value of 6 is not an arbitrary one. +It is based on the fact that humans can detect jitter at approximately 7ms, so +aiming for much lower latencies is pointless under most circumstances. It is +worth noting this fact when comparing the latency performance of BFS to other +schedulers. Worst case latencies being higher than 7ms are far worse than +average latencies not being in the microsecond range. + +Isochronous scheduling. + +Isochronous scheduling is a unique scheduling policy designed to provide +near-real-time performance to unprivileged (ie non-root) users without the +ability to starve the machine indefinitely. Isochronous tasks (which means +"same time") are set using, for example, the schedtool application like so: + + schedtool -I -e amarok + +This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works +is that it has a priority level between true realtime tasks and SCHED_NORMAL +which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie, +if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval +rate). However if ISO tasks run for more than a tunable finite amount of time, +they are then demoted back to SCHED_NORMAL scheduling. This finite amount of +time is the percentage of _total CPU_ available across the machine, configurable +as a percentage in the following "resource handling" tunable (as opposed to a +scheduler tunable): + + /proc/sys/kernel/iso_cpu + +and is set to 70% by default. It is calculated over a rolling 5 second average +Because it is the total CPU available, it means that on a multi CPU machine, it +is possible to have an ISO task running as realtime scheduling indefinitely on +just one CPU, as the other CPUs will be available. Setting this to 100 is the +equivalent of giving all users SCHED_RR access and setting it to 0 removes the +ability to run any pseudo-realtime tasks. + +A feature of BFS is that it detects when an application tries to obtain a +realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the +appropriate privileges to use those policies. When it detects this, it will +give the task SCHED_ISO policy instead. Thus it is transparent to the user. +Because some applications constantly set their policy as well as their nice +level, there is potential for them to undo the override specified by the user +on the command line of setting the policy to SCHED_ISO. To counter this, once +a task has been set to SCHED_ISO policy, it needs superuser privileges to set +it back to SCHED_NORMAL. This will ensure the task remains ISO and all child +processes and threads will also inherit the ISO policy. + +Idleprio scheduling. + +Idleprio scheduling is a scheduling policy designed to give out CPU to a task +_only_ when the CPU would be otherwise idle. The idea behind this is to allow +ultra low priority tasks to be run in the background that have virtually no +effect on the foreground tasks. This is ideally suited to distributed computing +clients (like setiathome, folding, mprime etc) but can also be used to start +a video encode or so on without any slowdown of other tasks. To avoid this +policy from grabbing shared resources and holding them indefinitely, if it +detects a state where the task is waiting on I/O, the machine is about to +suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As +per the Isochronous task management, once a task has been scheduled as IDLEPRIO, +it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can +be set to start as SCHED_IDLEPRIO with the schedtool command like so: + + schedtool -D -e ./mprime + +Subtick accounting. + +It is surprisingly difficult to get accurate CPU accounting, and in many cases, +the accounting is done by simply determining what is happening at the precise +moment a timer tick fires off. This becomes increasingly inaccurate as the +timer tick frequency (HZ) is lowered. It is possible to create an application +which uses almost 100% CPU, yet by being descheduled at the right time, records +zero CPU usage. While the main problem with this is that there are possible +security implications, it is also difficult to determine how much CPU a task +really does use. BFS tries to use the sub-tick accounting from the TSC clock, +where possible, to determine real CPU usage. This is not entirely reliable, but +is far more likely to produce accurate CPU usage data than the existing designs +and will not show tasks as consuming no CPU usage when they actually are. Thus, +the amount of CPU reported as being used by BFS will more accurately represent +how much CPU the task itself is using (as is shown for example by the 'time' +application), so the reported values may be quite different to other schedulers. +Values reported as the 'load' are more prone to problems with this design, but +per process values are closer to real usage. When comparing throughput of BFS +to other designs, it is important to compare the actual completed work in terms +of total wall clock time taken and total work done, rather than the reported +"cpu usage". + + +Con Kolivas Fri Aug 27 2010 Index: linux-2.6.35-bfs/lib/Kconfig.debug =================================================================== --- linux-2.6.35-bfs.orig/lib/Kconfig.debug 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/lib/Kconfig.debug 2010-08-13 08:39:05.078928237 +1000 @@ -760,7 +760,7 @@ config BOOT_PRINTK_DELAY config RCU_TORTURE_TEST tristate "torture tests for RCU" - depends on DEBUG_KERNEL + depends on DEBUG_KERNEL && !SCHED_BFS default n help This option provides a kernel module that runs torture tests Index: linux-2.6.35-bfs/arch/powerpc/platforms/cell/spufs/sched.c =================================================================== --- linux-2.6.35-bfs.orig/arch/powerpc/platforms/cell/spufs/sched.c 2010-05-17 18:51:19.000000000 +1000 +++ linux-2.6.35-bfs/arch/powerpc/platforms/cell/spufs/sched.c 2010-08-13 08:39:05.078928237 +1000 @@ -64,11 +64,6 @@ static struct timer_list spusched_timer; static struct timer_list spuloadavg_timer; /* - * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). - */ -#define NORMAL_PRIO 120 - -/* * Frequency of the spu scheduler tick. By default we do one SPU scheduler * tick for every 10 CPU scheduler ticks. */ Index: linux-2.6.35-bfs/kernel/sched.c =================================================================== --- linux-2.6.35-bfs.orig/kernel/sched.c 2010-08-02 11:12:25.000000000 +1000 +++ linux-2.6.35-bfs/kernel/sched.c 2010-08-13 08:39:05.080927935 +1000 @@ -1,3 +1,6 @@ +#ifdef CONFIG_SCHED_BFS +#include "sched_bfs.c" +#else /* * kernel/sched.c * @@ -8979,3 +8982,4 @@ void synchronize_sched_expedited(void) EXPORT_SYMBOL_GPL(synchronize_sched_expedited); #endif /* #else #ifndef CONFIG_SMP */ +#endif /* CONFIG_SCHED_BFS */ \ No newline at end of file Index: linux-2.6.35-bfs/include/linux/ioprio.h =================================================================== --- linux-2.6.35-bfs.orig/include/linux/ioprio.h 2009-06-10 13:05:27.000000000 +1000 +++ linux-2.6.35-bfs/include/linux/ioprio.h 2010-08-13 08:39:05.080927935 +1000 @@ -64,6 +64,8 @@ static inline int task_ioprio_class(stru static inline int task_nice_ioprio(struct task_struct *task) { + if (iso_task(task)) + return 0; return (task_nice(task) + 20) / 5; } Index: linux-2.6.35-bfs/kernel/kthread.c =================================================================== --- linux-2.6.35-bfs.orig/kernel/kthread.c 2010-05-17 18:51:25.000000000 +1000 +++ linux-2.6.35-bfs/kernel/kthread.c 2010-08-13 08:39:05.080927935 +1000 @@ -167,7 +167,9 @@ void kthread_bind(struct task_struct *p, } p->cpus_allowed = cpumask_of_cpu(cpu); +#ifndef CONFIG_SCHED_BFS p->rt.nr_cpus_allowed = 1; +#endif p->flags |= PF_THREAD_BOUND; } EXPORT_SYMBOL(kthread_bind); Index: linux-2.6.35-bfs/kernel/slow-work.c =================================================================== --- linux-2.6.35-bfs.orig/kernel/slow-work.c 2010-05-17 18:51:25.000000000 +1000 +++ linux-2.6.35-bfs/kernel/slow-work.c 2010-08-13 08:39:05.081927782 +1000 @@ -716,7 +716,6 @@ static int slow_work_thread(void *_data) DEFINE_WAIT(wait); set_freezable(); - set_user_nice(current, -5); /* allocate ourselves an ID */ spin_lock_irq(&slow_work_queue_lock);